4,018 research outputs found

    Significant enhancement of upper critical fields by doping and strain in Fe-based superconductors

    Full text link
    We report measurements of Hc2(T) up to 85 Tesla on Ba1-xKxAs2Fe2 single crystals and FeSe1-xTex films tuned by doping and strain. We observed an Hc2 enhancement by nearly 25 T at 30 K for the optimally-doped Ba1-xKxAs2Fe2 as compared to the previous results and extraordinarily high slopes dHc2/dT = 250-500 T/K near Tc in FeSe1-xTex indicating an almost complete suppression of the orbital pair-breaking. Theoretical analysis of Hc2(T) in FeSe1-xTex and the optimally doped Ba1-xKxAs2Fe2 predicts an inhomogeneous Fulde-Ferrel-Larkin-Ovchinnikov state for H//ab and T < 3-10 K, and shows that Hc2 in multiband Fe based superconductor can be enhanced by doping and strain much more effectively than by the conventional way of increasing disorder.Comment: Accepted for publication in Physical Review

    Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs?

    Full text link
    We present measurements of the temperature and field dependencies of the magnetization M(T,H) of Nd(O0.89F0.11)FeAs at fields up to 33T, which show that superconductivity with the critical temperature Tc ~ 51K cannot coexist with antiferromagnetic ordering. Although M(T,H) at 55 < T < 140K exhibits a clear Curie-Weiss temperature dependence corresponding to the Neel temperature TN ~ 11-12K, the behavior of M(T,H) below Tc is only consistent with either paramagnetism of weakly interacting magnetic moments or a spin glass state. We suggest that the anomalous magnetic behavior of an unusual high-field paramagnetic superconductor Nd(O1-xFx)FeAs is mostly determined by the magnetic Nd ions.Comment: 4 pages, 4 figure

    Microwave surface resistance of pristine and neutron-irradiated MgB2 samples in magnetic field

    Full text link
    We report on the microwave surface resistance of two polycrystalline Mg11B2 samples; one consists of pristine material, the other has been irradiated at very high neutron fluence. It has already been reported that in the strongly irradiated sample the two gaps merge into a single value. The mw surface resistance has been measured in the linear regime as a function of the temperature and the DC magnetic field, at increasing and decreasing fields. The results obtained in the strongly irradiated sample are quite well justified in the framework of a generalized Coffey and Clem model, in which we take into account the field distribution inside the sample due to the critical state. The results obtained in the pristine sample show several anomalies, especially at low temperatures, which cannot be justified in the framework of standard models for the fluxon dynamics. Only at temperatures near Tc and for magnetic fields greater than 0.5Hc2(T) the experimental data can quantitatively be accounted for by the Coffey and Clem model, provided that the upper-critical-field anisotropy is taken into due account.Comment: RevTeX, 13 pages with 10 eps figures, in press on EPJ

    Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    Full text link
    Microstructura lly clean, isov alently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at m0H = 35 T for H||ab and m0H = 18 T for H||c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.Comment: 5 pages, 4 figure
    corecore