3 research outputs found
Colorimetric Materials for Fire Gas Detection—A Review
The damage caused by outbreaks of fire continues to be enormous despite ongoing improvements in fire detection and fighting. Therefore, the detection of fires at the earliest possible stage is essential. The latest developments in fire detection devices include the addition of carbon monoxide (CO) or temperature sensors into the widespread smoke detectors, but also alternative solutions are searched for. Advantageous is the direct detection of the most relevant fire gases CO and nitrogen dioxide (NO2), because they are produced very early in a developing fire. A sensitive, selective, and low-cost method to detect these gases is the use of colorimetric materials combined with a compact optical readout. In this review, we take account of recent developments in this research field and provide a comprehensive overview on suitable materials for CO and NO2 detection in fire gas sensing and first steps towards novel fire gas detectors
Screen-Printed Sensors for Colorimetric Detection of Hydrogen Sulfide in Ambient Air
A fast and sensitive method to monitor hydrogen sulfide (H2S) in ambient air based on a visible color change of a printed disposable sensor has been developed. As gas-sensitive material, an immobilized copper(II) complex of the azo dye 1-(2-pyridylazo)-2-naphtol (H-PAN) was synthesized and prepared in an ethyl cellulose matrix for screen printing. If H2S is present in ambient air, the gas sensitive layer changes its color from purple to yellow. A pre-primed polyethylene (PE) foil and a coated offset paper served as the printing substrate. The colorimetric response to the target gas was measured by UV/Vis spectroscopy in reflection at H2S concentrations between 1 to 20 ppm. Possible cross-sensitivities of the printed sensors towards methane (CH4), formaldehyde (CH2O), carbon monoxide (CO), ammonia (NH3), and nitrogen dioxide (NO2), as well as the long-term stability was investigated. Furthermore, reflection measurements of the Cu-PAN complex on an amorphous silica powder under gas admission served as preliminary test for the subsequent paste development
Synthesis, characterization and thermoelectric performance of Mg2 (Si, Sn, Ge) materials using Si-kerf waste from photovoltaic technology
The recycling acquisition of silicon waste from photovoltaic industry has gained an increasing attention nowadays, since more than 50% of high purity material ends up as kerf during the wafer cutting process. Currently, different Si-based applications are being exploited in terms of using such Si kerf, in order to lower cost and significantly increase environmental impact. Thermoelectric devices can efficiently contribute towards this recycling approach, via the preparation of highly efficient silicides for power generation. In this work, Bi doped Mg2(Si,Sn,Ge) materials were prepared using Si-kerf originated from photovoltaic (PV) cutting wastes. Different Bi concentrations were studied in terms of thermoelectric properties and performance and a high figure-of-merit of 1.1. was achieved at 800K. In addition, a thorough structural and mechanical property characterization, such as morphology, phase identification, hardness and indentation modulus has been conducted. These results, which were evaluated and compared to materials prepared with pure Si (>99.9%), are presented for the first time for Mg2(Si,Sn,Ge) materials