3 research outputs found

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности литичСского стафилококкового Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ph20 ΠΈ литичСского Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° синСгнойной ΠΏΠ°Π»ΠΎΡ‡ΠΊΠΈ ph57 ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π² ортопСдичСскиС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ конструкции ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° (костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°)

    Get PDF
    Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods: Β First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction Β temperatures (+6…+25Β°C and +18…+50Β°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50Β°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25Β°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25Β°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.ОбоснованиС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ…Β Π²Β ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ, нСзависимо ΠΎΡ‚ использованного для ΠΈΡ… изготовлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ внимания Π·Π°ΡΠ»ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅Β Π²Β ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»ΡΡŽΡ‚ exΒ tempore (ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ надобности) ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΠΈ ортопСдичСских хирургичСских Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ… (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ костный Ρ†Π΅ΠΌΠ΅Π½Ρ‚). Π—Π°Ρ‰ΠΈΡ‚Π° Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² подвСргаСтся мноТСствСнной ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠ΅, поэтому в качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ литичСскиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ рядом ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… прСимущСств, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ возмоТности ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Β ΠΈΒ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности в таких условиях в литСратурС Π½Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ. ЦСль исслСдования ― ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ физичСского размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π΅Β ΠΈ Π²Β ΠΌΠΎΠ΄Π΅Π»ΠΈΒ inΒ vitroΒ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ литичСский Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ эффСкт Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ exΒ tempore ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ.Β ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ этапом Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π°Β Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силовая микроскопия (АБМ) ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° мСдицинского назначСния для выяснСния наличия и размСров ΠΊΠ°Π²Π΅Ρ€Π½, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ послС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси (+6…+25 Β°CΒ ΠΈΒ +18…+50 Β°C). Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом inΒ vitro Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° импрСгнация Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² (ph20, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ StaphylococcusΒ aureus,Β ΠΈΒ ph57, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ PseudomonasΒ aeruginosa)Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈΒ ΡΒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π’Β Ρ…ΠΎΠ΄Π΅ выполнСния АБМ установлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΊΠ°Π²Π΅Ρ€Π½Π°Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°: ΠΌΠ΅Π΄ΠΈΠ°Π½Π° сСчСния и глубины ΠΊΠ°Π²Π΅Ρ€Π½ Π½Π° внСшнСй повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +18…+50 Β°C, составила 100,0Β ΠΈΒ 40,0Β Π½ΠΌ соотвСтствСнно,Β Π°Β Π½Π° повСрхности ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ скола образца ― 120,0Β ΠΈΒ 100,0Β Π½ΠΌ соотвСтствСнно, Ρ‡Ρ‚ΠΎ статистичСски Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‚ гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΊΠ°Π²Π΅Ρ€Π½ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +6…+25 Β°C. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠΏΡ€Π΅Π³Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ +6…+25 Β°CΒ Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ стафилококковый Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph20 ΡƒΡ‚Ρ€Π°Ρ‚ΠΈΠ» эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΡƒΠΆΠ΅Β Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΡˆΠ΅ΡΡ‚ΠΈ суток с момСнта Π½Π°Ρ‡Π°Π»Π° экспСримСнта, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ синСгнойный Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph57 сохранял эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΒ Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 13 сут.Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. В исслСдовании Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ мСдицинского назначСния с поддСрТаниСм эффСктивного Ρ‚ΠΈΡ‚Ρ€Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ эмиссии Π²ΠΎ внСшнюю срСду, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡƒΡ‚ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ примСнСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ способа доставки бактСриофагов в клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π’Π°ΠΊΠΆΠ΅ сдСланы прСдполоТСния о вСроятной подвСрТСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² агрСссивным воздСйствиям со стороны химичСских ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² «костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Β» ΠΈ/ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ строгого ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ способа доставки ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²

    Stimulation of mouse hematopoietic stem cells by angiogenin and DNA preparations

    Get PDF
    Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell. In the present research, we have analyzed the effects of DNA genome reconstructor preparation (DNAgr), DNAmix, and human recombinant angiogenin on both hematopoietic stem cells and multipotent progenitors. Treatment with bone marrow cells of experimental mice with these preparations stimulates colony formation by hematopoietic stem cells and proliferation of multipotent descendants. The main lineage responsible for this is the granulocyte-macrophage hematopoietic lineage. Using fluorescent microscopy as well as FACS assay, co-localization of primitive c-Kit- and Sca-1-positive progenitors and the TAMRA-labeled double-stranded DNA has been shown. Human recombinant angiogenin was used as a reference agent. Cells with specific markers were quantified in intact bone marrow and colonies grown in the presence of inducers. Quantitative analysis revealed that a total of 14,000 fragment copies of 500 bp, which is 0.2% of the haploid genome, can be delivered into early progenitors. Extracellular double-stranded DNA fragments stimulated the colony formation in early hematopoietic progenitors from the bone marrow, which assumed their effect on cells in G0. The observed number of Sca1+/c-Kit+ cells in colonies testifies to the possibility of both symmetrical and asymmetrical division of the initial hematopoietic stem cell and its progeny

    Π˜ΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Ρ‹Π΅ свойства ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ² SARS-CoV-2

    No full text
    Background. In 2020, the pandemic caused by novel coronavirus infection has become one of the most critical global health challenges during the past century. The lack of a vaccine, as the most effective way to control the novel infection, has prompted the development of a large number of preventive products by the scientific community. We have developed a candidate vaccine (EpiVacCorona) against novel coronavirus infection caused by SARS-CoV-2 that is based on chemically synthesized peptides conjugated to a carrier protein and adsorbed on aluminum hydroxide and studied the specific activity of the developed vaccine. Aims study of the immunogenicity and protectivity of the peptide candidate vaccine EpiVacCorona. Methods. The work was performed using standard molecular biological, virological and histological methods. Results. It was demonstrated that EpiVacCorona, when administered twice, spaced 14 days apart, to hamsters, ferrets, and non-human primates (african green monkeys, rhesus macaques) at a dose of 260 g, which is equal to one inoculation dose for humans, induces virus-specific antibodies in 100% of the animals. Experiments in hamsters showed this vaccine to be associated with the dose-dependent immunogenicity. The vaccine was shown to accelerate the elimination of the virus from the upper respiratory tract in ferrets and prevent the development of pneumonia in hamsters and non-human primates following a respiratory challenge with novel coronavirus. Conclusions. The results of a preclinical specific activity study indicate that the use of EpiVacCorona has the potential for human vaccination.ОбоснованиС. Π’ 2020 Π³. пандСмия, вызванная Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ, стала ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· самых ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Ρ… испытаний для глобального здравоохранСния Π·Π° послСднСС столСтиС. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΊΠ°ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ дСйствСнного способа Π±ΠΎΡ€ΡŒΠ±Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π½ΠΎΠ²ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ обусловило Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ сообщСством большого количСства профилактичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ². Нами Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° кандидатная Π²Π°ΠΊΡ†ΠΈΠ½Π° (Π­ΠΏΠΈΠ’Π°ΠΊΠšΠΎΡ€ΠΎΠ½Π°) ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ SARS-CoV-2 Π½Π° основС химичСски синтСзированных ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², ΠΊΠΎΠ½ΡŠΡŽΠ³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° Π±Π΅Π»ΠΎΠΊ-Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ ΠΈ адсорбированных Π½Π° гидроксид алюминия, ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π΅Π΅ спСцифичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ЦСль исслСдования ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… свойств ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠΉ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ Π­ΠΏΠΈΠ’Π°ΠΊΠšΠΎΡ€ΠΎΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ стандартных молСкулярно-биологичСских, вирусологичСских ΠΈ гистологичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ Π­ΠΏΠΈΠ’Π°ΠΊΠšΠΎΡ€ΠΎΠ½Π° ΠΏΡ€ΠΈ Π΄Π²ΡƒΠΊΡ€Π°Ρ‚Π½ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ с ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ Π² 14 Π΄Π½Π΅ΠΉ хомякам, Ρ…ΠΎΡ€ΡŒΠΊΠ°ΠΌ ΠΈ низшим ΠΏΡ€ΠΈΠΌΠ°Ρ‚Π°ΠΌ (африканским Π·Π΅Π»Π΅Π½Ρ‹ΠΌ ΠΌΠ°Ρ€Ρ‚Ρ‹ΡˆΠΊΠ°ΠΌ, ΠΌΠ°ΠΊΠ°ΠΊΠ°ΠΌ-рСзусам) Π² Π΄ΠΎΠ·Π΅ 260 ΠΌΠΊΠ³, Ρ€Π°Π²Π½ΠΎΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡ€ΠΈΠ²ΠΈΠ²ΠΎΡ‡Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅ для Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΡŽ вирусспСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Ρƒ 100% ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Π’ ΠΎΠΏΡ‹Ρ‚Π°Ρ… Π½Π° хомяках ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²Π°ΠΊΡ†ΠΈΠ½Π½Ρ‹ΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ дозозависимой ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ, Π²Π°ΠΊΡ†ΠΈΠ½Π° ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅Ρ‚ ускорСниС элиминации вируса ΠΈΠ· Π²Π΅Ρ€Ρ…Π½ΠΈΡ… Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ Ρƒ Ρ…ΠΎΡ€ΡŒΠΊΠΎΠ² ΠΈ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ Ρƒ хомяков ΠΈ Π½ΠΈΠ·ΡˆΠΈΡ… ΠΏΡ€ΠΈΠΌΠ°Ρ‚ΠΎΠ² послС рСспираторного зараТСния Π½ΠΎΠ²Ρ‹ΠΌ коронавирусом. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ доклиничСского исслСдования спСцифичСской активности ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности использования Π­ΠΏΠΈΠ’Π°ΠΊΠšΠΎΡ€ΠΎΠ½Π° для Π²Π°ΠΊΡ†ΠΈΠ½Π°Ρ†ΠΈΠΈ людСй
    corecore