17 research outputs found

    A System-Wide Investigation of the Dynamics of Wnt Signaling Reveals Novel Phases of Transcriptional Regulation

    Get PDF
    Aberrant Wnt signaling has been implicated in a wide variety of cancers and many components of the Wnt signaling network have now been identified. Much less is known, however, about how these proteins are coordinately regulated. Here, a broad, quantitative, and dynamic study of Wnt3a-mediated stimulation of HEK 293 cells revealed two phases of transcriptional regulation: an early phase in which signaling antagonists were downregulated, providing positive feedback, and a later phase in which many of these same antagonists were upregulated, attenuating signaling. The dynamic expression profiles of several response genes, including MYC and CTBP1, correlated significantly with proliferation and migration (P<0.05). Additionally, their levels tracked with the tumorigenicity of colon cancer cell lines and they were significantly overexpressed in colorectal adenocarcinomas (P<0.05). Our data highlight CtBP1 as a transcription factor that contributes to positive feedback during the early phases of Wnt signaling and serves as a novel marker for colorectal cancer progression

    KInhibition: A Kinase Inhibitor Selection Portal

    No full text
    Summary: Protein kinases constitute a large class of signaling molecules frequently targeted in research and clinical uses. However, kinase inhibitors are notoriously non-specific, making it difficult to select an appropriate inhibitor for a given kinase. Available data from large-scale kinase inhibitor screens are often difficult to query. Here, we present KInhibition (https://kinhibition.fredhutch.org), an online portal that allows users to search publicly available datasets to find selective inhibitors for a chosen kinase or group of kinases. Compounds are sorted by a KInhibition Selectivity Score, calculated based on compounds' activity against the selected kinase(s) versus activity against all other kinases for which that compound has been profiled. The current version allows users to query four datasets, with a framework that can easily accommodate additional datasets. KInhibition represents a powerful platform through which researchers from broad areas of biology, chemistry, and pharmacology can easily interrogate large datasets to help guide their selection of kinase inhibitors. : Molecular Biology; Bioinformatics; Software Engineering Subject Areas: Molecular Biology, Bioinformatics, Software Engineerin

    Olverembatinib inhibits SARS‐CoV‐2‐Omicron variant‐mediated cytokine release in human peripheral blood mononuclear cells

    No full text
    The N‐terminus domain (NTD) of the SARS‐CoV‐2 Omicron variant spike protien strongly induces multiple inflammatory molecules in human peripheral blood mononuclear cells, unaffected by the mutations observed in the NTD. Olverembatinib, a clinical‐stage multi‐kinase inhibitor, potently inhibits Omicron NTD‐mediated cytokine release.[Image: see text

    Proteomic and Transcriptomic Profiling Reveals Mitochondrial Oxidative Phosphorylation as Therapeutic Vulnerability in Androgen Receptor Pathway Active Prostate Tumors

    No full text
    Metastatic prostate cancer (PC) is the second leading cause of cancer deaths in males and has limited therapeutic options. The lack of preclinical models for advanced stage PC represents one of the primary barriers in understanding the key genetic drivers of aggressive subsets, including androgen receptor (AR) pathway active and AR-null castration-resistant prostate cancers (CRPC). In our studies, we described a series of LuCaP patient-derived xenograft (PDX) models representing the major genomic and phenotypic features of human disease. To fully exploit the potential of these preclinical models, we carried out a comprehensive transcriptomic and proteomic profiling of 42 LuCaP PDX prostate tumors. The collected proteomic data (~6000 data points) based on 71 antibodies revealed many of the previously known molecular markers associated with AR-positive and AR-null CRPC. Genomic analysis indicated subtype-specific activation of pathways such as Wnt/beta-catenin signaling, mTOR, and oxidative phosphorylation for AR-positive CRPC and upregulation of carbohydrate metabolism and glucose metabolism for AR-null CRPC. Of these, we functionally confirmed the role of mitochondrial metabolism in AR-positive CRPC cell lines. Our data highlight how the integration of transcriptomic and proteomic approaches and PDX systems as preclinical models can potentially map the connectivity of poorly understood signaling pathways in metastatic prostate cancer

    A kinase to cytokine explorer to identify molecular regulators and potential therapeutic opportunities

    No full text
    Cytokines and chemokines are secreted proteins that regulate various biological processes, such as inflammation, immune response, and cell differentiation. Therefore, disruption of signaling pathways involving these proteins has been linked to a range of diseases, including cancer. However, targeting individual cytokines, chemokines, or their receptors is challenging due to their regulatory redundancy and incomplete understanding of their signaling networks. To transform these difficult-to-drug targets into a pharmacologically manageable class, we developed a web-based platform called KinCytE. This platform was designed to link the effects of kinase inhibitors, a well-established class of drugs, with cytokine and chemokine release and signaling networks. The resulting KinCytE platform enables users to investigate protein kinases that regulate specific cytokines or chemokines, generate a ranked list of FDA-approved kinase inhibitors that affect cytokine/chemokine activity, and explore and visualize cytokine signaling network thus facilitating drugging this challenging target class. KinCytE is freely accessible via https://atlas.fredhutch.org/kincyte

    Anesthetics inhibit phosphorylation of the ribosomal protein S6 in mouse cultured cortical cells and developing brain

    Get PDF
    IntroductionThe development and maintenance of neural circuits is highly sensitive to neural activity. General anesthetics have profound effects on neural activity and, as such, there is concern that these agents may alter cellular integrity and interfere with brain wiring, such as when exposure occurs during the vulnerable period of brain development. Under those conditions, exposure to anesthetics in clinical use today causes changes in synaptic strength and number, widespread apoptosis, and long-lasting cognitive impairment in a variety of animal models. Remarkably, most anesthetics produce these effects despite having differing receptor mechanisms of action. We hypothesized that anesthetic agents mediate these effects by inducing a shared signaling pathway.MethodsWe exposed cultured cortical cells to propofol, etomidate, or dexmedetomidine and assessed the protein levels of dozens of signaling molecules and post-translational modifications using reverse phase protein arrays. To probe the role of neural activity, we performed separate control experiments to alter neural activity with non-anesthetics. Having identified anesthetic-induced changes in vitro, we investigated expression of the target proteins in the cortex of sevoflurane anesthetized postnatal day 7 mice by Western blotting.ResultsAll the anesthetic agents tested in vitro reduced phosphorylation of the ribosomal protein S6, an important member of the mTOR signaling pathway. We found a comparable decrease in cortical S6 phosphorylation by Western blotting in sevoflurane anesthetized neonatal mice. Using a systems approach, we determined that propofol, etomidate, dexmedetomidine, and APV/TTX all similarly modulate a signaling module that includes pS6 and other cell mediators of the mTOR-signaling pathway.DiscussionReduction in S6 phosphorylation and subsequent suppression of the mTOR pathway may be a common and novel signaling event that mediates the impact of general anesthetics on neural circuit development
    corecore