14 research outputs found
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Phenotype remodeling in neutrophilic granulocyte subsets CD64-CD32+CD16+CD11B+NG, CD64+CD32+CD16+CD11B+NG in de novo experimental model of viral-bacterial infection in vitro
A search for new targeted therapeutic strategies based on examining immunopathogenetic mechanisms for emerging co-infections is relevant and may further contribute not only to optimizing choice of immunotropic drugs, but also to achieving positive clinical and immunological remission for abnormal infectious processes. Previously, our studies found that recurrent viral-bacterial respiratory infections are associated with dysfunction of neutrophilic granulocytes (NG) with varying degree of intensity in altered effector properties. NG dysfunctions are often associated with diverse phenotypic profiles characterized by varying density for expression level of functionally significant trigger receptors. The aim of the study was to pinpoint phenotype transformation in CD64-CD32+CD16+CD11b+, CD64+CD32+CD16+CD11b+ neutrophilic granulocytes in experimental model of viral-bacterial infection in vitro. We examined 52 peripheral blood samples collected from 13 healthy adult volunteers. Viral, bacterial and virus-bacterial infection was modelled in vitro by incubating blood-derived cell samples with formyl-methionyl-leucyl-phenylalanine (fMLP), double-stranded RNA (dsRNA) or in combination followed by assessing changes in immunophenotyping of CD64-CD32+CD16+CD11b+NG, CD64+CD32+CD16+CD11b+NG by using using MAbs CD16-ECD, CD64-FITC, CD32-PE, CD11b-PC5 conjugates (Beckman Coulter International SA, France). It was demonstrated that NGs from healthy adult volunteers were dominated by CD64-CD32+CD16+CD11b+NG as well as minor subset CD64+CD32+CD16+CD11b+ NG varying in expression density of membrane molecules. Percentage of the minor subset CD64+CD16+CD32+CD11b+ NG was significantly increased after exposure with dsRNA, fMLP and dsRNA+fMLP compared to untreated samples. Comparative analysis revealed that various immunotropic agents differed in affecting expression of surface receptor molecules CD16, CD32 and unidirectional effects, but of varying magnitude altering CD11b marker both in major and minor subsets. Preincubation with dsRNA followed by adding fMLP allowed to find that they co-stimulated expression of surface receptors in both NG subsets. We generated an experimental model of viral-bacterial co-infection in vitro by using fMLP and dsRNA and observed types of phenotype transformation in CD64-CD32+CD16+CD11b+ NG and CD64+CD32+CD16+CD11b+ NG subsets. This model can be used to evaluate transformation of other NG subset phenotypes, NG functional activity, features of NET formation as well as impact of various immunotropic agents on NG.ΠΠΎΠΈΡΠΊ Π½ΠΎΠ²ΡΡ
ΡΠ°ΡΠ³Π΅ΡΠ½ΡΡ
ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΉ, Π±Π°Π·ΠΈΡΡΡΡΠΈΡ
ΡΡ Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΊΠΎΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΉ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ Π²ΡΠ±ΠΎΡΠ° ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΎΠΏΠ½ΡΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ², Π½ΠΎ ΠΈ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-ΠΈΠΌΠΌΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΌΠΈΡΡΠΈΠΈ Π½Π΅ΡΠΈΠΏΠΈΡΠ½ΠΎ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ
ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ². Π Π°Π½Π΅Π΅ Π½Π°ΡΠΈΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ Π±ΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΠΎΠ·Π²ΡΠ°ΡΠ½ΡΠ΅ Π²ΠΈΡΡΡΠ½ΠΎ-Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Ρ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π½Π΅ΠΉΡΡΠΎΡΠΈΠ»ΡΠ½ΡΡ
Π³ΡΠ°Π½ΡΠ»ΠΎΡΠΈΡΠΎΠ² (ΠΠ) Ρ ΡΠ°Π·Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ ΠΈΡ
ΡΡΡΠ΅ΠΊΡΠΎΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ². ΠΠ°ΡΠ°ΡΡΡΡ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΠΈ ΠΠ ΡΠΎΠΏΡΡΠΆΠ΅Π½Ρ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΡΠΈΠ»ΡΠΌΠΈ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠΌΠΈΡΡ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΡΠΎΠ²Π½ΡΠΌΠΈ ΠΈ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ Π·Π½Π°ΡΠΈΠΌΡΡ
ΡΡΠΈΠ³Π³Π΅ΡΠ½ΡΡ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ². Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΎ ΡΡΠΎΡΠ½Π΅Π½ΠΈΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ CD64-CD32+CD16+CD11b+Hr, CD64+CD32+CD16+CD11b+Hr Π² ΡΠΎΠ·Π΄Π°Π½Π½ΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²ΠΈΡΡΡΠ½ΠΎ-Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ in vitro. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ 52 ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ 13 Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π²Π·ΡΠΎΡΠ»ΡΡ
Π΄ΠΎΠ±ΡΠΎΠ²ΠΎΠ»ΡΡΠ΅Π² Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΠΎΡ 21 Π΄ΠΎ 32 Π»Π΅Ρ. ΠΠ»Ρ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π²ΠΈΡΡΡΠ½ΠΎΠΉ, Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π²ΠΈΡΡΡΠ½ΠΎ-Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΡΡ ΠΈΠ½ΠΊΡΠ±ΠΈΡΠΎΠ²Π°Π»ΠΈ Ρ ΡΠΎΡΠΌΠΈΠ»-ΠΌΠ΅ΡΠΈΠΎΠ½ΠΈΠ»-Π»Π΅ΠΉΡΠΈΠ»-ΡΠ΅Π½ΠΈΠ»Π°Π»Π°Π½ΠΈΠ½ (fMLP), Π΄Π²ΡΡ
ΡΠ΅ΠΏΠΎΡΠ΅ΡΠ½ΠΎΠΉ Π ΠΠ (Π΄ΡΠ ΠΠ) ΠΈ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ, Π·Π°ΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ CD64-CD32+CD16+CD11b+Hr, CD64+CD32+CD16+CD11b+Hr Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠ³Π°ΡΠΎΠ² ΠΠΠΠ’ CD16-ECD, CD64-FITC, CD32-PE, CD11b-PC5 (Beckman Coulter International S.A., Π€ΡΠ°Π½ΡΠΈΡ). ΠΠ½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π», ΡΡΠΎ ΠΠ Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π²Π·ΡΠΎΡΠ»ΡΡ
Π»ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΌΠ°ΠΆΠΎΡΠ½ΠΎΠΉ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠ΅ΠΉ CD64-CD16+CD32+CD11b+ ΠΠ ΠΈ ΠΌΠΈΠ½ΠΎΡΠ½ΠΎΠΉ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠ΅ΠΉ CD64+CD16+CD32+CD11b+ ΠΠ Ρ ΡΠ°Π·Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡΡ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ». ΠΠΈΠ½ΠΎΡΠ½Π°Ρ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡ CD64+CD16+CD32+CD11b+ ΠΠ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ»Π°ΡΡ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π΄ΡΠ ΠΠ, fMLP ΠΈ Π΄ΡΠ ΠΠ + fMLP ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΈΠ½ΡΠ°ΠΊΡΠ½ΡΠΌΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌΠΈ. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΎΠ½ΠΎΠ²Π»ΠΈΡΠ½ΠΈΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΎΠΏΠ½ΡΡ
ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²ΡΡΠ²ΠΈΡΡ ΠΈΡ
ΡΠ°Π·Π½ΡΠ΅ ΡΡΡΠ΅ΠΊΡΡ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ½ΡΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ CD16, CD32 ΠΈ ΠΎΠ΄Π½ΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅, Π½ΠΎ ΡΠ°Π·Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½Π° CD11b, ΠΊΠ°ΠΊ Π² ΠΌΠ°ΠΆΠΎΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ Π² ΠΌΠΈΠ½ΠΎΡΠ½ΠΎΠΉ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΡ
. ΠΡΠ΅ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΡ Ρ Π΄ΡΠ ΠΠ Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ fMLP Π² Π³ΡΡΠΏΠΏΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²ΡΡΠ²ΠΈΡΡ ΡΡΡΠ΅ΠΊΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΡΡΡΠ΅Π³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΉ Π½Π° ΡΡΠΎΠ²Π½ΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΎΠ±Π΅ΠΈΡ
ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ ΠΠ. ΠΠ°ΠΌΠΈ Π±ΡΠ»Π° ΡΠΎΠ·Π΄Π°Π½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π²ΠΈΡΡΡΠ½ΠΎ-Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ in vitro Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ fMLP ΠΈ Π΄ΡΠ ΠΠ ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π²Π°ΡΠΈΠ°Π½ΡΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ° ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ CD64-CD32+CD16+CD11b+Hr ΠΈ CD64+CD32+CD16+CD11b+Hr ΠΠ°Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ° Π΄ΡΡΠ³ΠΈΡ
ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ ΠΠ, ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΠ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ NET, Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΠ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΎΠΏΠ½ΡΡ
ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΉ
PHENOTYPE REMODELING IN NEUTROPHILIC GRANULOCYTE SUBSETS CD64(-)CD32(+)CD16(+)CD11B(+)NG, CD64(+)CD32(+)CD16(+)CD11B(+)NG IN DE NOVO EXPERIMENTAL MODEL OF VIRAL-BACTERIAL INFECTION IN VITRO
A search for new targeted therapeutic strategies based on examining immunopathogenetic mechanisms for emerging co-infections is relevant and may further contribute not only to optimizing choice of immunotropic drugs, but also to achieving positive clinical and immunological remission for abnormal infectious processes. Previously, our studies found that recurrent viral-bacterial respiratory infections are associated with dysfunction of neutrophilic granulocytes (NG) with varying degree of intensity in altered effector properties. NG dysfunctions are often associated with diverse phenotypic profiles characterized by varying density for expression level of functionally significant trigger receptors. The aim of the study was to pinpoint phenotype transformation in CD64(-)CD32(+)CD16(+)CD11b(+), CD64(+)CD32(+)CD16(+)CD11b(+) neutrophilic granulocytes in experimental model of viral-bacterial infection in vitro. We examined 52 peripheral blood samples collected from 13 healthy adult volunteers. Viral, bacterial and virus-bacterial infection was modelled in vitro by incubating blood-derived cell samples with formyl-methionyl-leucyl-phenylalanine (fMLP), double-stranded RNA (dsRNA) or in combination followed by assessing changes in immunophenotyping of CD64(-) CD32(+)CD16(+)CD11b+NG C.D64(+)CD32(+)CD16(+)CD11b(+)NG by using using MAbs CD16-ECD, CD64-FITC, CD32-PE, CD11b-PC5 conjugates (Beckman Coulter International SA, France). It was demonstrated that NGs from healthy adult volunteers were dominated by CD64-CD32(+)CD16(+)CD11b(+)NG as well as minor subset.D64+CD32+CD16+CD11b(+) NG varying in expression density of membrane molecules. Percentage of the minor subset.D64+CD16+CD32+CD11b(+) NG was significantly increased after exposure with dsRNA, fMLP and dsRNA(+)fMLP compared to untreated samples. Comparative analysis re vealed that various immunotropic agents differed in affecting expression of surface receptor molecules CD16, CD32 and unidirectional effects, but of varying magnitude altering CD11b marker both in major and minor subsets. Preincubation with dsRNA followed by adding fMLP allowed to find that they co-stimulated expression of surface receptors in both NG subsets. We generated an experimental model of viral-bacterial co-infection in vitro by using fMLP and dsRNA and observed types of phenotype transformation in CD64(-) CD32(+)CD16(+)CD11b(+) NG and.D64+CD32+CD16+CD11b+ NG subsets. This model can be used to evaluate transformation of other NG subset phenotypes, NG functional activity, features of NET formation as well as impact of various immunotropic agents on NG
Superluminal source of directional pulsed wideband electromagnetic radiation
A photoemission source of directional pulsed wideband electromagnetic radiation in the microwave region is developed, and the time profile of the generated pulse is investigated. The source is a vacuum photodiode of a parabolic shape in which a Cherenkov radiation pulse is formed by an electron current wave excited by an incident laser pulse and propagating along the surface of the anode mesh with a phase velocity higher than the speed of light. Β© 2014, Allerton Press, Inc
Superluminal source of directional pulsed wideband electromagnetic radiation
A photoemission source of directional pulsed wideband electromagnetic radiation in the microwave region is developed, and the time profile of the generated pulse is investigated. The source is a vacuum photodiode of a parabolic shape in which a Cherenkov radiation pulse is formed by an electron current wave excited by an incident laser pulse and propagating along the surface of the anode mesh with a phase velocity higher than the speed of light. Β© 2014, Allerton Press, Inc
Mathematical model of radiation heating of microelectronic device
Abstract:
Radiation heating of a semiconductor crystal is considered. A model is constructed for transferring energy to the crystal by excess charge carriers, which are formed during the scattering of ionizing radiation. The energy distribution lost by the incident radiation in the crystal is calculated between the conduction electrons and phonons of the crystal lattice.Note:
Research direction:Mathematical modelling in actual problems of science and technic
The Algorithm for Modeling Radiation Thermomechanical Effects in Cattaneo Approximation
Abstract:
The effect of ionizing radiation on a micro-electronics product is considered. The propagation of heat and mechanical stresses is presented as a single process for the transport of crystal lattice phonons, conduction electrons, and holes of the valence band. A related model based on the equations of thermoelasticity is formulated. The transport of heat is described by the law of conservation of energy and the Cattaneo equation, a consequence of the kinetic equation for phonons. Lattice vibrations are considered in the approximation of the linear theory of elasticity. Difference schemes for solving model equations are developed.Note:
Research direction:Mathematical modelling in actual problems of science and technic