11 research outputs found
Interleukin-10 restores glutamate receptor-mediated Ca(2+)-signaling in brain circuits under loss of Sip1 transcription factor.
peer reviewedOBJECTIVE: This study aimed to investigate the connection between the mutation of the Sip1 transcription factor and impaired Ca(2+)-signaling, which reflects changes in neurotransmission in the cerebral cortex in vitro. METHODS: We used mixed neuroglial cortical cell cultures derived from Sip1 mutant mice. The cells were loaded with a fluorescent ratiometric calcium-sensitive probe Fura-2 AM and epileptiform activity was modeled by excluding magnesium ions from the external media or adding a GABA(A) receptor antagonist, bicuculline. Intracellular calcium dynamics were recorded using fluorescence microscopy. To identify the level of gene expression, the Real-Time PCR method was used. RESULTS: It was found that cortical neurons isolated from homozygous (Sip1(fl/fl)) mice with the Sip1 mutation demonstrate suppressed Ca(2+) signals in models of epileptiform activity in vitro. Wild-type cortical neurons are characterized by synchronous high-frequency and high-amplitude Ca(2+) oscillations occurring in all neurons of the network in response to Mg(2+)-free medium and bicuculline. But cortical Sip1(fl/fl) neurons only single Ca(2+) pulses or attenuated Ca(2+) oscillations are recorded and only in single neurons, while most of the cell network does not respond to these stimuli. This signal deficiency of Sip1(fl/fl) neurons correlates with a suppressed expression level of the genes encoding the subunits of NMDA, AMPA, and KA receptors; protein kinases PKA, JNK, CaMKII; and also the transcription factor Hif1α. These negative effects were partially abolished when Sip1(fl/fl) neurons are grown in media with anti-inflammatory cytokine IL-10. IL-10 increases the expression of the above-mentioned genes but not to the level of expression in wild-type. At the same time, the amplitudes of Ca(2+) signals increase in response to the selective agonists of NMDA, AMPA and KA receptors, and the proportion of neurons responding with Ca(2+) oscillations to a Mg(2+)-free medium and bicuculline increases. CONCLUSION: IL-10 restores neurotransmission in neuronal networks with the Sip1 mutation by regulating the expression of genes encoding signaling proteins
Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10.
peer reviewedThe Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1(fl/fl) mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca(2+)-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10
Intracellular Neuroprotective Mechanisms in Neuron-Glial Networks Mediated by Glial Cell Line-Derived Neurotrophic Factor.
peer reviewedGlial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF. Hypoxia modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). GDNF (1 ng/ml) was added to the culture medium 20 min before oxygen deprivation. Acute hypoxia-induced irreversible changes in the ultrastructure of neurons and astrocytes led to the loss of functional Сa(2+) activity and neural network disruption. Destructive changes in the mitochondrial apparatus and its functional activity characterized by an increase in the basal oxygen consumption rate and respiratory chain complex II activity during decreased stimulated respiration intensity were observed 24 hours after hypoxic injury. At a concentration of 1 ng/ml, GDNF maintained the functional metabolic network activity in primary hippocampal cultures and preserved the structure of the synaptic apparatus and number of mature chemical synapses, confirming its neuroprotective effect. GDNF maintained the normal structure of mitochondria in neuronal outgrowth but not in the soma. Analysis of the possible GDNF mechanism revealed that RET kinase, a component of the receptor complex, and the PI3K/Akt pathway are crucial for the neuroprotective effect of GDNF. The current study also revealed the role of GDNF in the regulation of HIF-1α transcription factor expression under hypoxic conditions
A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure
Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair
Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an inhibitor of inhibitors in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life
The mouse Laf4 gene: Exon/intron organization, cDNA sequence, alternative splicing, and expression during central nervous system development
The cerebral cortex is a tissue with a high degree of neuronal diversity. It consists of six cell layers with a unique set of neuronal subtypes. A crucial step in the process of cortical differentiation is the transition from a mitotically active neuroblast to a postmitotic young neuron. To identify genes involved in the control of this transition, we applied a novel method of cDNA subtraction based on mirror-orientation selection. One of the genes we have identified in our screening proved to be a mouse homolog of the human putative transcription factor LAF4. We identified alternatively spliced forms of mouse Laf4 that encode several forms of putative protein with potentially different transactivation functions. Two forms are expressed mainly during embryogenesis, whereas the other forms are expressed mainly in adults. We have found that Laf4 transcription becomes very quickly upregulated as soon as young cortical neurons leave the ventricular zone (VZ), the cortical-proliferative compartment. This coincides with the initial steps of cortical differentiation. Laf4 becomes downregulated in postnatal cortex, indicating its involvement in the transcriptional regulation of the early steps of cortical differentiation. We have also examined Laf4 expression in the brains of Sey and reeler mutants. Laf4 was downregulated in the lateroventral part of the cerebral cortex and completely lost in the piriform cortex of the Sey mutant embryos. We also compared its expression during central nervous system development with that of its closest homolog, Fmr2, a gene implicated in mental retardation in humans