8 research outputs found
Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine.
Tissue-specific stem cells have unique properties and growth requirements, but a small set of juxtacrine and paracrine signals have been identified that are required across multiple niches. Whereas insulin-like growth factor II (IGF-II) is necessary for prenatal growth, its role in adult stem cell physiology is largely unknown. We show that loss of Igf2 in adult mice resulted in a ∼50% reduction in slowly dividing, label-retaining cells in the two regions of the brain that harbor neural stem cells. Concordantly, induced Igf2 deletion increased newly generated neurons in the olfactory bulb accompanied by hyposmia, and caused impairments in learning and memory and increased anxiety. Induced Igf2 deletion also resulted in rapid loss of stem and progenitor cells in the crypts of Lieberkühn, leading to body-weight loss and lethality and the inability to produce organoids in vitro. These data demonstrate that IGF-II is critical for multiple adult stem cell niches
Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits
Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock
The Role of the Hippocampus in Avoidance Learning and Anxiety Vulnerability
The hippocampus has been implicated in anxiety disorders and post-traumatic stress disorder (PTSD); human studies suggest that a dysfunctional hippocampus may be a vulnerability factor for the development of PTSD. In the current study, we examined the effect of hippocampal damage in avoidance learning, as avoidance is a core symptom of all anxiety disorders. First, the effect of hippocampal damage on avoidance learning was investigated in outbred Sprague Dawley (SD) rats. Second, the function of the hippocampus in Wistar-Kyoto (WKY) rats was compared to SD rats. The WKY rat is an animal model of behavioral inhibition, a risk factor for anxiety, and demonstrates abnormal avoidance learning, marked by facilitated avoidance acquisition and resistance to extinction. The results of the current study indicate that hippocampal damage in SD rats leads to impaired extinction of avoidance learning similar to WKY rats. Furthermore, WKY rats have reduced hippocampal volume and impaired hippocampal synaptic plasticity as compared to SD rats. These results suggest that hippocampal dysfunction enhances the development of persistent avoidance responding and, thus, may confer vulnerability to the development of anxiety disorders and PTSD
Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine
Summary: Tissue-specific stem cells have unique properties and growth requirements, but a small set of juxtacrine and paracrine signals have been identified that are required across multiple niches. Whereas insulin-like growth factor II (IGF-II) is necessary for prenatal growth, its role in adult stem cell physiology is largely unknown. We show that loss of Igf2 in adult mice resulted in a ∼50% reduction in slowly dividing, label-retaining cells in the two regions of the brain that harbor neural stem cells. Concordantly, induced Igf2 deletion increased newly generated neurons in the olfactory bulb accompanied by hyposmia, and caused impairments in learning and memory and increased anxiety. Induced Igf2 deletion also resulted in rapid loss of stem and progenitor cells in the crypts of Lieberkühn, leading to body-weight loss and lethality and the inability to produce organoids in vitro. These data demonstrate that IGF-II is critical for multiple adult stem cell niches. : In this article, Levison, Wood and colleagues demonstrate that IGF-II expression in the adult mouse is necessary for maintaining multiple adult stem cell niches including in the subventricular and subgranular zones of the brain and in the crypts of Lieberkühn of the gut. Keywords: neural stem cell, IGF-II, intestinal stem cell, subventricular zone, subgranular zone, crypt of Lieberkühn, neurogenesi
Role of Insulin-Like Growth Factor-Binding Protein 5 (IGFBP5) in Organismal and Pancreatic β-Cell Growth
A family of IGF-binding proteins (IGFBP) exerts biological actions both dependent on and independent of IGF-I. A major effector of the insulin/IGF-I signaling pathway, the serine/threonine protein kinase Akt, mediates cellular processes such as glucose uptake, protein synthesis, cell survival, and growth. IGF-I is required for normal organismal growth, and in the pancreatic β-cell, the insulin/IGF-I signaling pathway is critical for normal and adaptive maintenance of β-cell mass. Expression of myrAkt1, an activated form of Akt, in the endocrine pancreas drives β-cell expansion through dramatic increases in both islet and β-cell size and number. Herein we present a comparative expression profiling of myrAkt1 transgenic islets that demonstrates the increased abundance of transcripts encoding proteins associated with growth, suppression of apoptosis, RNA processing, and metabolism. Although IGFBP5 is identified as a gene induced by Akt1 activation in the β-cell, Igfbp5 expression is not necessary for myrAkt1 to augment β-cell size or mass in vivo. However, in the absence of Igfbp5, mice demonstrate an increase in size and mild glucose intolerance. This is accentuated during diet-induced obesity, when Igfbp5-deficient mice have increased adiposity compared with wild-type mice on the same diet. These studies reveal a novel role for Igfbp5 in the control of growth and metabolism