29 research outputs found
Groups with poly-context-free word problem
We consider the class of groups whose word problem is poly-context-free; that
is, an intersection of finitely many context-free languages. We show that any
group which is virtually a finitely generated subgroup of a direct product of
free groups has poly-context-free word problem, and conjecture that the
converse also holds. We prove our conjecture for several classes of soluble
groups, including metabelian groups and torsion-free soluble groups, and
present progress towards resolving the conjecture for soluble groups in
general. Some of the techniques introduced for proving languages not to be
poly-context-free may be of independent interest.Comment: 38 pages, no figure
Automaton semigroup constructions
The aim of this paper is to investigate whether the class of automaton
semigroups is closed under certain semigroup constructions. We prove that the
free product of two automaton semigroups that contain left identities is again
an automaton semigroup. We also show that the class of automaton semigroups is
closed under the combined operation of 'free product followed by adjoining an
identity'. We present an example of a free product of finite semigroups that we
conjecture is not an automaton semigroup. Turning to wreath products, we
consider two slight generalizations of the concept of an automaton semigroup,
and show that a wreath product of an automaton monoid and a finite monoid
arises as a generalized automaton semigroup in both senses. We also suggest a
potential counterexample that would show that a wreath product of an automaton
monoid and a finite monoid is not a necessarily an automaton monoid in the
usual sense.Comment: 13 pages; 2 figure
Automaton semigroups: new construction results and examples of non-automaton semigroups
This paper studies the class of automaton semigroups from two perspectives:
closure under constructions, and examples of semigroups that are not automaton
semigroups. We prove that (semigroup) free products of finite semigroups always
arise as automaton semigroups, and that the class of automaton monoids is
closed under forming wreath products with finite monoids. We also consider
closure under certain kinds of Rees matrix constructions, strong semilattices,
and small extensions. Finally, we prove that no subsemigroup of arises as an automaton semigroup. (Previously, itself was
the unique example of a finitely generated residually finite semigroup that was
known not to arise as an automaton semigroup.)Comment: 27 pages, 6 figures; substantially revise
Automaton semigroup free products revisited
An improvement on earlier results on free products of automaton semigroups;
showing that a free product of two automaton semigroups is again an automaton
semigroup providing there exists a homomorphism from one of the base semigroups
to the other. The result is extended by induction to give a condition for a
free product of finitely many automaton semigroups to be an automaton
semigroup.Comment: 5 page