8 research outputs found
A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses
Many contemporary studies have shown that astrocytes play a significant role
in modulating both short and long form of synaptic plasticity. There are very
few experimental models which elucidate the role of astrocyte over Long-term
Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of
astrocytes in induction of LTP at single hippocampal synapses. They suggested a
purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA)
Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic
induction were not investigated. Here, in this article, we propose a
mathematical model for astrocyte modulated LTP which successfully emulates the
experimental findings of Perea & Araque (2007). Our study suggests the role of
retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically
modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to
appear
Improved Long-Term Memory via Enhancing cGMP-PKG Signaling Requires cAMP-PKA Signaling
Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/PKG signaling mediates early memory consolidation as well as early-phase-LTP, while cAMP/PKA signaling mediates late consolidation and late-phase-like LTP. Additionally, we show for the first time that early-phase cGMP/PKG-signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.Neuropsychopharmacology accepted article preview online, 12 May 2014; doi:10.1038/npp.2014.106