182 research outputs found

    Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials

    Get PDF
    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery specific to muscles for treating muscular dystrophies and non-muscle diseases in large animal models and human trials, factors that influence the intensity of the immune responses, and immune modulatory strategies to prevent unwanted immune responses and induce tolerance to the vector and therapeutic gene for a successful gene therapy

    Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs.

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is the most common and severe form of muscular dystrophy in humans. The goal of myogenic stem cell transplant therapy for DMD is to increase dystrophin expression in existing muscle fibers and to provide a source of stem cells for future muscle generation. Although syngeneic myogenic stem cell transplants have been successful in mice, allogeneic transplants of myogenic stem cells were ineffective in several human trials. To determine whether allogeneic muscle progenitor cells can be successfully transplanted in an immune-tolerant recipient, we induced immune tolerance in two DMD-affected (cxmd) dogs through hematopoietic cell transplantation (HCT). Injection of freshly isolated muscle-derived cells from the HCT donor into either fully or partially chimeric xmd recipients restored dystrophin expression up to 6.48% of wild-type levels, reduced the number of centrally located nuclei, and improved muscle structure. Dystrophin expression was maintained for at least 24 weeks. Taken together, these data indicate that immune tolerance to donor myoblasts provides an important platform from which to further improve myoblast transplantation, with the goal of restoring dystrophin expression to patients with DMD

    Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination

    Get PDF
    Postnatal growth and regeneration of skeletal muscle requires a population of resident myogenic precursors named satellite cells. The transcription factor Pax7 is critical for satellite cell biogenesis and survival and has been also implicated in satellite cell self-renewal; however, the underlying molecular mechanisms remain unclear. Previously, we showed that Pax7 overexpression in adult primary myoblasts down-regulates MyoD and prevents myogenin induction, inhibiting myogenesis. We show that Pax7 prevents muscle differentiation independently of its transcriptional activity, affecting MyoD function. Conversely, myogenin directly affects Pax7 expression and may be critical for Pax7 down-regulation in differentiating cells. Our results provide evidence for a cross-inhibitory interaction between Pax7 and members of the muscle regulatory factor family. This could represent an additional mechanism for the control of satellite cell fate decisions resulting in proliferation, differentiation, and self-renewal, necessary for skeletal muscle maintenance and repair

    Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. In murine-to-murine transplantation experiments, CXCR4 expression marks a population of adult murine satellite cells with robust engraftment potential in <it>mdx </it>mice, and CXCR4-positive murine muscle-derived SP cells home more effectively to dystrophic muscle after intra-arterial delivery in <it>mdx<sup>5cv </sup></it>mice. Together, these data suggest that CXCR4 plays an important role in donor cell engraftment. Therefore, we sought to translate these results to a clinically relevant canine-to-canine allogeneic transplant model for Duchenne muscular dystrophy (DMD) and determine if CXCR4 is important for donor cell engraftment.</p> <p>Methods</p> <p>In this study, we used a canine-to-murine xenotransplantation model to quantitatively compare canine muscle cell engraftment, and test the most effective cell population and modulating factor in a canine model of DMD using allogeneic transplantation experiments.</p> <p>Results</p> <p>We show that CXCR4 expressing cells are important for donor muscle cell engraftment, yet FACS sorted CXCR4-positive cells display decreased engraftment efficiency. However, diprotin A, a positive modulator of CXCR4-SDF-1 binding, significantly enhanced engraftment and stimulated sustained proliferation of donor cells <it>in vivo</it>. Furthermore, the canine-to-murine xenotransplantation model accurately predicted results in canine-to-canine muscle cell transplantation.</p> <p>Conclusions</p> <p>Therefore, these results establish the efficacy of diprotin A in stimulating muscle cell engraftment, and highlight the pre-clinical utility of a xenotransplantation model in assessing the relative efficacy of muscle stem cell populations.</p

    Regulation of neuroD2 expression in mouse brain

    Get PDF
    AbstractThe basic helix–loop–helix (bHLH) transcription factor, neuroD2, induces neuronal differentiation and promotes neuronal survival. Reduced levels of neuroD2 were previously shown to cause motor deficits, ataxia, and seizure propensity. Because neuroD2 levels may be critical for brain function, we studied the regulation of neuroD2 gene in cell culture and transgenic mouse models. In transgenic mice, a 10-kb fragment of the neuroD2 promoter fully recapitulated the endogenous neuroD2 staining pattern. A 1-kb fragment of the neuroD2 promoter drove reporter gene expression in most, but not all neuroD2-positive neuronal populations. Mutation of two critical E-boxes, E4 and E5 (E4 and E5 situated 149 and 305 bp upstream of the transcriptional start site) eliminated gene expression. NeuroD2 expression was diminished in mice lacking neurogenin1 demonstrating that neurogenin1 regulates neuroD2 during murine brain development. These studies demonstrate that neuroD2 expression is highly dependent on bHLH-responsive E-boxes in the proximal promoter region, that additional distal regulatory elements are important for neuroD2 expression in a subset of cortical neurons, and that neurogenin1 regulates neuroD2 expression during mouse brain development

    Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice

    Networking the nucleus

    Get PDF
    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus
    corecore