80 research outputs found

    Search for proton emission of the isomeric 10+ state in 54 Ni

    Get PDF
    9 pags., 7 figs., 1 tab.Several experiments were conducted at the 10 MV Van-de-Graaff tandem accelerator at the Institute of Nuclear Physics, Cologne, to detect proton emission from the isomeric 6457-keV 10 state in Ni. Excitation functions for two fusion–evaporation reactions were measured to maximise the population of the rare two-neutron evaporation channel from a Ni compound nucleus. The search for delayed proton emission was based on the Si (Si , 2 n)Ni reaction at a beam energy of 70 MeV. For this reaction, a cross-section limit for the population of the 10 state in Ni and its proton-decay branch was determined to be σ< 22 nb.Open Access funding provided by Projekt DEAL. We would like to thank the accelerator staff at the University of Cologne for the efforts to deliver heavy-ion beams of excellent quality, as well as the Swedish Research Council (contract VR 2008-4240 and VR 2016- 3969) for financial support

    Study of Isomeric States in <sup>198,200,202,206</sup>Pb and <sup>206</sup>Hg Populated in Fragmentation Reactions

    Get PDF
    Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populated following reactions of a relativistic 208Pb primary beam impinging on a 9Be fragmentation target. Secondary beams of 198;200;202;206Pb and 206Hg were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed γ rays were detected with the Advanced GAmma Tracking Array (AGATA). Decay schemes were re-evaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei 206Pb/206Hg was found to differ from the population of multi neutron-hole isomeric states in 198;200;202Pb

    Study of isomeric states in 198,200,202,206 Pb and 206 Hg populated in fragmentation reactions

    Get PDF
    Isomeric states in isotopes in the vicinity of doubly-magic 208 Pb were populated following reactions of a relativistic 208 Pb primary beam impinging on a 9 Be fragmentation target. Secondary beams of 198,200,202,206 Pb and 206 Hg were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed γ rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were re-evaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei 206 Pb/ 206 Hg was found to differ from the population of multi neutron-hole isomeric states in 198,200,202 Pb
    corecore