23 research outputs found
Studies on a widely-recognized snail model species (Lymnaea stagnalis) provide further evidence that vertebrate steroids do not have a hormonal role in the reproduction of mollusks
Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis , can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17β-estradiol [E 2 ]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E 2 , progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis ). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources
PARP inhibition induces Akt-mediated cytoprotective effects through the formation of a mitochondria-targeted phospho-ATM-NEMO-Akt-mTOR signalosome
The cytoprotective effect of poly(ADP-ribose) polymerase 1 (PARP1) inhibition is well documented in various cell types subjected to oxidative stress. Previously, we have demonstrated that PARP1 inhibition activates Akt, and showed that this response plays a critical role in the maintenance of mitochondrial integrity and in cell survival. However, it has not yet been defined how nuclear PARP1 signals to cytoplasmic Akt.Methods: WRL 68, HeLa and MCF7 cells were grown in culture. Oxidative stress was induced with hydrogen peroxide. PARP was inhibited with the PARP inhibitor PJ34. ATM, mTOR- and NEMO were silenced using specific siRNAs. Cell viability assays were based on the MTT assay. PARP-ATM pulldown experiments were conducted; each protein was visualized by Western blotting. Immunoprecipitation of ATM, phospho-ATM and NEMO was performed from cytoplasmic and mitochondrial cell fractions and proteins were detected by Western blotting. In some experiments, a continually active Akt construct was introduced. Nuclear to cytoplasmic and mitochondrial translocation of phospho-Akt was visualized by confocal microscopy.Results: Here we present evidence for a PARP1 mediated, PARylation- dependent interaction between ATM and NEMO, which is responsible for the cytoplasmic transport of phosphorylated (thus, activated) ATM kinase. In turn, the cytoplasmic p-ATM and NEMO forms complex with mTOR and Akt, yielding the phospho-ATM-NEMO-Akt-mTOR signalosome, which is responsible for the PARP- inhibition induced Akt activation. The phospho-ATM-NEMO-Akt-mTOR signalosome localizes to the mitochondria and is essential for the PARP-inhibition-mediated cytoprotective effects in oxidatively stressed cells. When the formation of the signalosome is prevented, the cytoprotective effects diminish, but cells can be rescued by constantly active Akt1, further confirming the critical role of Akt activation in cytoprotection.Conclusions: Taken together, the data presented in the current paper are consistent with the hypothesis that PARP inhibition suppresses the PARylation of ATM, which, in turn, forms an ATM-NEMO complex, which exits the nucleus, and combines in the cytosol with mTOR and Act, resulting in Act phosphorylation (i.e. activation), which, in turn, produces the cytoprotective action via the induction of Akt- mediated survival pathways. This mechanism can be important in the protective effect of PARP inhibitor in various diseases associated with oxidative stress. Moreover, disruption of the formation or action of the phospho-ATM-NEMO-Akt-mTOR signalosome may offer potential future experimental therapeutic checkpoints
Involvement of Mitochondrial Mechanisms and Cyclooxygenase‐2 Activation in the Effect of Desethylamiodarone on 4T1 Triple‐Negative Breast Cancer Line
Novel compounds significantly interfering with the mitochondrial energy production may have therapeutic value in triple-negative breast cancer (TNBC). This criterion is clearly fulfilled by desethylamiodarone (DEA), which is a major metabolite of amiodarone, a widely used antiarrhythmic drug, since the DEA previously demonstrated anti-neoplastic, anti-metastasizing, and direct mitochondrial effects in B16F10 melanoma cells. Additionally, the more than fifty years of clinical experience with amiodarone should answer most of the safety concerns about DEA. Accordingly, in the present study, we investigated DEA’s potential in TNBC by using a TN and a hormone receptor positive (HR+) BC cell line. DEA reduced the viability, colony formation, and invasive growth of the 4T1 cell line and led to a higher extent of the MCF-7 cell line. It lowered mitochondrial transmembrane potential and induced mitochondrial fragmentation. On the other hand, DEA failed to significantly affect various parameters of the cellular energy metabolism as determined by a Seahorse live cell respirometer. Cyclooxygenase 2 (COX-2), which was upregulated by DEA in the TNBC cell line only, accounted for most of 4T1’s DEA resistance, which was counteracted by the selective COX-2 inhibitor celecoxib. All these data indicate that DEA may have potentiality in the therapy of TNBC
The Lipidation Profile of Aquaporin-0 Correlates with The Acyl Composition of Phosphoethanolamine Lipids in Lens Membranes
The lens fiber major intrinsic protein (otherwise known as aquaporin-0 (AQP0), MIP26 and MP26) has been examined by mass spectrometry (MS) in order to determine the speciation of acyl modifications to the side chains of lysine residues and the N-terminal amino group. The speciation of acyl modifications to the side chain of one specific, highly conserved lysine residue (K238) and the N-terminal amino group of human and bovine AQP0 revealed, in decreasing order of abundance, oleoyl, palmitoyl, stearoyl, eicosenoyl, dihomo-γ-linolenoyl, palmitoleoyl and eicosadienoyl modifications. In the case of human AQP0, an arachidonoyl modification was also found at the N-terminus. The relative abundances of these modifications mirror the fatty acid composition of lens phosphatidylethanolamine lipids. This lipid class would be expected to be concentrated in the inner leaflet of the lens fiber membrane to which each of the potential AQP0 lipidation sites is proximal. Our data evidence a broad lipidation profile that is both species and site independent, suggesting a chemical-based ester aminolysis mechanism to explain such modifications
Amiodarone's major metabolite, desethylamiodarone inhibits proliferation of B16-F10 melanoma cells and limits lung metastasis formation in an in vivo experimental model.
Previously, we demonstrated the in vitro anti-tumor effects of desethylamiodarone (DEA) in bladder and cervix cancer cell lines. In the present study, we intended to establish its potentiality in B16-F10 metastatic melanoma cells in vitro and in vivo. We assessed cell proliferation, apoptosis and cell cycle by using sulforhodamine B assay, Muse™ Annexin V & Dead Cell and Muse® Cell Cycle assays, respectively. We determined colony formation after crystal violet staining. For studying mechanistic aspects, immunoblotting analysis was performed. We used a C57BL/6 experimental lung metastasis model for demonstrating in vivo anti-metastatic potential of DEA. DEA inhibited in vitro proliferation and colony formation, and in vivo lung metastasizing properties of B16-F10 cells. It arrested the cells in G0/G1 phase of their cycle likely via p21 in a p53-dependent fashion, and induced caspase mediated apoptosis likely via inversely regulating Bcl-2 and Bax levels, and reducing Akt and ERK1/2 activation. In this study, we provided in vitro and in vivo experimental evidences for DEA's potentiality in the therapy of metastatic melanomas. Since DEA is the major metabolite of amiodarone, a worldwide used antiarrhythmic drug, safety concerns could be resolved more easily for it than for a novel pharmacological agent
Desethylamiodarone-A metabolite of amiodarone-Induces apoptosis on T24 human bladder cancer cells via multiple pathways.
Bladder cancer (BC) is a common malignancy of the urinary tract that has a higher frequency in men than in women. Cytostatic resistance and metastasis formation are significant risk factors in BC therapy; therefore, there is great interest in overcoming drug resistance and in initiating research for novel chemotherapeutic approaches. Here, we suggest that desethylamiodarone (DEA)-a metabolite of amiodarone-may have cytostatic potential. DEA activates the collapse of mitochondrial membrane potential (detected by JC-1 fluorescence), and induces cell death in T24 human transitional-cell bladder carcinoma cell line at physiologically achievable concentrations. DEA induces cell cycle arrest in the G0/G1 phase, which may contribute to the inhibition of cell proliferation, and shifts the Bax/Bcl-2 ratio to initiate apoptosis, induce AIF nuclear translocation, and activate PARP-1 cleavage and caspase-3 activation. The major cytoprotective kinases-ERK and Akt-are inhibited by DEA, which may contribute to its cell death-inducing effects. DEA also inhibits the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and reduces colony formation of T24 bladder carcinoma cells, indicating its possible inhibitory effect on metastatic potential. These data show that DEA is a novel anti-cancer candidate of multiple cell death-inducing effects and metastatic potential. Our findings recommend further evaluation of its effects in clinical studies
BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability
BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434–451). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 was, however, not required for plasma membrane association, but biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalised with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various naturally occurring C-terminus fragments of BFSP1. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The full-length C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments enhance regulation by elevated calcium or reverse the wild type response. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations
Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix
Background: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aqua- 21 porin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is 22 myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic 23 analyses suggested that the sequences 434-452 were a-helical and amphipathic. Methods and Re- 24 sults: By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an 25 intrinsically disordered to a more a-helical conformation for the residues 434-467. Recombinantly 26 produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as deter- 27 mined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non- 28 lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to 29 cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compart- 30 ments such as the nuclear and mitochondrial membranes were negative. The N-terminal myristoy- 31 lation of the amphipathic helix appeared not to change either the lipid affinity or membrane locali- 32 sation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it 33 did appear to enhance its helical content. Conclusions: These data support the conclusion that C- 34 terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane 35 binding properties via an adjacent amphipathic helix