8,545 research outputs found
Universal field equations for metric-affine theories of gravity
We show that almost all metric--affine theories of gravity yield Einstein
equations with a non--null cosmological constant . Under certain
circumstances and for any dimension, it is also possible to incorporate a Weyl
vector field and therefore the presence of an anisotropy. The viability
of these field equations is discussed in view of recent astrophysical
observations.Comment: 13 pages. This is a copy of the published paper. We are posting it
here because of the increasing interest in f(R) theories of gravit
Recycling of quantum information: Multiple observations of quantum systems
Given a finite number of copies of an unknown qubit state that have already
been measured optimally, can one still extract any information about the
original unknown state? We give a positive answer to this question and quantify
the information obtainable by a given observer as a function of the number of
copies in the ensemble, and of the number of independent observers that, one
after the other, have independently measured the same ensemble of qubits before
him. The optimality of the protocol is proven and extensions to other states
and encodings are also studied. According to the general lore, the state after
a measurement has no information about the state before the measurement. Our
results manifestly show that this statement has to be taken with a grain of
salt, specially in situations where the quantum states encode confidential
information.Comment: 4 page
Differential antifungal activity of human and cryptococcal melanins with structural discrepancies
IndexaciĂłn: Scopus.Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) ÎĽg/mL, respectively, for human melanin; 273.4/(125- > 500) and 367.2/(125.5- > 500) ÎĽg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) ÎĽg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity.https://www.frontiersin.org/articles/10.3389/fmicb.2017.01292/ful
Beating noise with abstention in state estimation
We address the problem of estimating pure qubit states with non-ideal (noisy)
measurements in the multiple-copy scenario, where the data consists of a number
N of identically prepared qubits. We show that the average fidelity of the
estimates can increase significantly if the estimation protocol allows for
inconclusive answers, or abstentions. We present the optimal such protocol and
compute its fidelity for a given probability of abstention. The improvement
over standard estimation, without abstention, can be viewed as an effective
noise reduction. These and other results are exemplified for small values of N.
For asymptotically large N, we derive analytical expressions of the fidelity
and the probability of abstention, and show that for a fixed fidelity gain the
latter decreases with N at an exponential rate given by a Kulback-Leibler
(relative) entropy. As a byproduct, we obtain an asymptotic expression in terms
of this very entropy of the probability that a system of N qubits, all prepared
in the same state, has a given total angular momentum. We also discuss an
extreme situation where noise increases with N and where estimation with
abstention provides a most significant improvement as compared to the standard
approach
Multi-copy programmable discrimination of general qubit states
Quantum state discrimination is a fundamental primitive in quantum statistics
where one has to correctly identify the state of a system that is in one of two
possible known states. A programmable discrimination machine performs this task
when the pair of possible states is not a priori known, but instead the two
possible states are provided through two respective program ports. We study
optimal programmable discrimination machines for general qubit states when
several copies of states are available in the data or program ports. Two
scenarios are considered: one in which the purity of the possible states is a
priori known, and the fully universal one where the machine operates over
generic mixed states of unknown purity. We find analytical results for both,
the unambiguous and minimum error, discrimination strategies. This allows us to
calculate the asymptotic performance of programmable discrimination machines
when a large number of copies is provided, and to recover the standard state
discrimination and state comparison values as different limiting cases.Comment: Based on version published in Physical Review A, some errors in
appendix A corrected. 13 pages, 4 figure
Phase estimation for thermal Gaussian states
We give the optimal bounds on the phase-estimation precision for mixed
Gaussian states in the single-copy and many-copy regimes. Specifically, we
focus on displaced thermal and squeezed thermal states. We find that while for
displaced thermal states an increase in temperature reduces the estimation
fidelity, for squeezed thermal states a larger temperature can enhance the
estimation fidelity. The many-copy optimal bounds are compared with the minimum
variance achieved by three important single-shot measurement strategies. We
show that the single-copy canonical phase measurement does not always attain
the optimal bounds in the many-copy scenario. Adaptive homodyning schemes do
attain the bounds for displaced thermal states, but for squeezed states they
yield fidelities that are insensitive to temperature variations and are,
therefore, sub-optimal. Finally, we find that heterodyne measurements perform
very poorly for pure states but can attain the optimal bounds for sufficiently
mixed states. We apply our results to investigate the influence of losses in an
optical metrology experiment. In the presence of losses squeezed states cease
to provide Heisenberg limited precision and their performance is close to that
of coherent states with the same mean photon number.Comment: typos correcte
Secrecy content of two-qubit states
We analyze the set of two-qubit states from which a secret key can be
extracted by single-copy measurements plus classical processing of the
outcomes. We introduce a key distillation protocol and give the corresponding
necessary and sufficient condition for positive key extraction. Our results
imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66},
060302 (2002), for a secure key distribution using the six-state scheme is
tight. Remarkably, an optimal eavesdropping attack against this protocol does
not require any coherent quantum operation.Comment: 5 pages, RevTe
Multiple copy 2-state discrimination with individual measurements
We address the problem of non-orthogonal two-state discrimination when
multiple copies of the unknown state are available. We give the optimal
strategy when only fixed individual measurements are allowed and show that its
error probability saturates the collective (lower) bound asymptotically. We
also give the optimal strategy when adaptivity of individual von Neumann
measurements is allowed (which requires classical communication), and show that
the corresponding error probability is exactly equal to the collective one for
any number of copies. We show that this strategy can be regarded as Bayesian
updating.Comment: 5 pages, RevTe
- …