11 research outputs found

    Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems

    No full text
    Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many approaches developed so far consider a fixed number of sensors, which requires the ML model redevelopment and collection of sufficient data with the new sensor configuration for training. To overcome these issues, this study presents a novel approach based on Long Short-Term Memory neural networks (NNs) that leverages transfer learning to manage a varying number of sensors and retain good detection performance with limited training data. The proposed detection model first learns to reproduce the normal behavior of the system on a dataset obtained in burst-free conditions. The training process involves predicting flow and pressure one-time step ahead using historical data and time-related features as inputs. During testing, a post-prediction step flags potential bursts based on the comparison between the observations and model predictions using a time-varied error threshold. When adding new sensors, we implement transfer learning by replicating the weights of existing channels and then fine-tune the augmented NN. We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis to understand the impact of data resolution and error threshold on burst detection performance. The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 98.1% in real-life settings and can identify bursts, even in data scarce conditions.Sanitary Engineerin

    High-fidelity cyber and physical simulation of water distribution systems. II: Enabling cyber-physical attack localization

    No full text
    A fundamental problem in the realm of cyber-physical security of smart water networks is attack detection, a key step towards designing adequate countermeasures. This task is typically carried out by algorithms that analyze time series of process data. However, the nature of the data available to develop these algorithms limits their capabilities: by relying on process data only, one cannot distinguish a cyber-attack from the failure of a system’s component or identify the root cause of an attack. Here, we show that these limitations can be addressed through the joint analysis of process and network data—with the latter representing the information exchanged between the components constituting the Industrial Control System, such as sensors and Programmable Logic Controllers (PLCs). For this purpose, we utilize a dataset generated by digital hydraulic simulator (DHALSIM)—a numerical modelling platform built on a two-way interaction between EPANET version 2.2 and a network emulation tool—which is extended here to include a framework for launching cyber-physical attacks. This paper presents a dataset with realistic network information of a smart water network under cyber-physical attacks and presents an analysis of how that information can enable the development of better intrusion detection systems that can localize and identify attacks. Through this analysis, the dataset provided here, and the open-source availability of DHALSIM, our work paves the way to a novel class of analytics for actionable detection.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Sanitary Engineerin

    Deep learning methods for flood mapping: A review of existing applications and future research directions

    No full text
    Deep learning techniques have been increasingly used in flood management to overcome the limitations of accurate, yet slow, numerical models and to improve the results of traditional methods for flood mapping. In this paper, we review 58 recent publications to outline the state of the art of the field, identify knowledge gaps, and propose future research directions. The review focuses on the type of deep learning models used for various flood mapping applications, the flood types considered, the spatial scale of the studied events, and the data used for model development. The results show that models based on convolutional layers are usually more accurate, as they leverage inductive biases to better process the spatial characteristics of the flooding events. Models based on fully connected layers, instead, provide accurate results when coupled with other statistical models. Deep learning models showed increased accuracy when compared to traditional approaches and increased speed when compared to numerical methods. While there exist several applications in flood susceptibility, inundation, and hazard mapping, more work is needed to understand how deep learning can assist in real-time flood warning during an emergency and how it can be employed to estimate flood risk. A major challenge lies in developing deep learning models that can generalize to unseen case studies. Furthermore, all reviewed models and their outputs are deterministic, with limited considerations for uncertainties in outcomes and probabilistic predictions. The authors argue that these identified gaps can be addressed by exploiting recent fundamental advancements in deep learning or by taking inspiration from developments in other applied areas. Models based on graph neural networks and neural operators can work with arbitrarily structured data and thus should be capable of generalizing across different case studies and could account for complex interactions with the natural and built environment. Physics-based deep learning can be used to preserve the underlying physical equations resulting in more reliable speed-up alternatives for numerical models. Similarly, probabilistic models can be built by resorting to deep Gaussian processes or Bayesian neural networks.Sanitary EngineeringMultimedia ComputingHydraulic Structures and Flood Ris

    Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks

    No full text
    Numerical modelling is a reliable tool for flood simulations, but accurate solutions are computationally expensive. In recent years, researchers have explored data-driven methodologies based on neural networks to overcome this limitation. However, most models are only used for a specific case study and disregard the dynamic evolution of the flood wave. This limits their generalizability to topographies that the model was not trained on and in time-dependent applications. In this paper, we introduce shallow water equation–graph neural network (SWE–GNN), a hydraulics-inspired surrogate model based on GNNs that can be used for rapid spatio-temporal flood modelling. The model exploits the analogy between finite-volume methods used to solve SWEs and GNNs. For a computational mesh, we create a graph by considering finite-volume cells as nodes and adjacent cells as being connected by edges. The inputs are determined by the topographical properties of the domain and the initial hydraulic conditions. The GNN then determines how fluxes are exchanged between cells via a learned local function. We overcome the time-step constraints by stacking multiple GNN layers, which expand the considered space instead of increasing the time resolution. We also propose a multi-step-ahead loss function along with a curriculum learning strategy to improve the stability and performance. We validate this approach using a dataset of two-dimensional dike breach flood simulations in randomly generated digital elevation models generated with a high-fidelity numerical solver. The SWE–GNN model predicts the spatio-temporal evolution of the flood for unseen topographies with mean average errors in time of 0.04 m for water depths and 0.004 m2 s−1 for unit discharges. Moreover, it generalizes well to unseen breach locations, bigger domains, and longer periods of time compared to those of the training set, outperforming other deep-learning models. On top of this, SWE–GNN has a computational speed-up of up to 2 orders of magnitude faster than the numerical solver. Our framework opens the doors to a new approach to replace numerical solvers in time-sensitive applications with spatially dependent uncertainties.Sanitary EngineeringMultimedia ComputingHydraulic Structures and Flood Ris

    Machine Learning-Based Surrogate Modeling for Urban Water Networks: Review and Future Research Directions

    No full text
    Surrogate models replace computationally expensive simulations of physically-based models to obtain accurate results at a fraction of the time. These surrogate models, also known as metamodels, have been employed for analysis, control, and optimization of water distribution and urban drainage systems. With the advent of machine learning (ML), water engineers have increasingly resorted to these data-driven techniques to develop metamodels of urban water networks (UWNs). In this article, we review 31 recent articles on ML-based metamodeling of UWNs to outline the state-of-the-art of the field, identify outstanding gaps, and propose future research directions. For each article, we critically examined the purpose of the metamodel, the metamodel characteristics, and the applied case study. The review shows that current metamodels suffer several drawbacks, including (a) the curse of dimensionality, hindering implementation for large case studies; (b) black-box deterministic nature, limiting explainability and applicability; and (c) rigid architecture, preventing generalization across multiple case studies. We argue that researchers should tackle these issues by resorting to recent advancements in ML concerning inductive biases, robustness, and transferability. Recently developed neural network architectures, which extend deep learning methods to graph data structures, are preferred candidates for advancing surrogate modeling in UWNs. Furthermore, we foresee increasing efforts for complex applications where metamodels may play a fundamental role, such as uncertainty analysis and multi-objective optimization. Lastly, the development and comparison of ML-based metamodels can benefit from the availability of new benchmark datasets for urban drainage systems and realistic complex networks.Sanitary Engineerin

    Advancing deep learning-based detection of floating litter using a novel open dataset

    No full text
    Supervised Deep Learning (DL) methods have shown promise in monitoring the floating litter in rivers and urban canals but further advancements are hard to obtain due to the limited availability of relevant labeled data. To address this challenge, researchers often utilize techniques such as transfer learning (TL) and data augmentation (DA). However, there is no study currently reporting a rigorous evaluation of the effectiveness of these approaches for floating litter detection and their effects on the models' generalization capability. To overcome the problem of limited data availability, this work introduces the “TU Delft—Green Village” dataset, a novel labeled dataset of 9,473 camera and phone images of floating macroplastic litter and other litter items, captured using experiments in a drainage canal of TU Delft. We use the new dataset to conduct a thorough evaluation of the detection performance of five DL architectures for multi-class image classification. We focus the analysis on a systematic evaluation of the benefits of TL and DA on model performances. Moreover, we evaluate the generalization capability of these models for unseen litter items and new device settings, such as increasing the cameras' height and tilting them to 45°. The results obtained show that, for the specific problem of floating litter detection, fine-tuning all layers is more effective than the common approach of fine-tuning the classifier alone. Among the tested DA techniques, we find that simple image flipping boosts model accuracy the most, while other methods have little impact on the performance. The SqueezeNet and DenseNet121 architectures perform the best, achieving an overall accuracy of 89.6 and 91.7%, respectively. We also observe that both models retain good generalization capability which drops significantly only for the most complex scenario tested, but the overall accuracy raises significantly to around 75% when adding a limited amount of images to training data, combined with flipping augmentation. The detailed analyses conducted here and the released open source dataset offer valuable insights and serve as a precious resource for future research.Sanitary Engineerin

    A Review of Cybersecurity Incidents in the Water Sector

    No full text
    This study presents a critical review of disclosed, documented, and malicious cybersecurity incidents in the water sector to inform safeguarding efforts against cybersecurity threats. The review is presented within a technical context of industrial control system architectures, attack-defense models, and security solutions. Fifteen incidents were selected and analyzed through a search strategy that included a variety of public information sources ranging from federal investigation reports to scientific papers. For each individual incident, the situation, response, remediation, and lessons learned were compiled and described. The findings of this review indicate an increase in the frequency, diversity, and complexity of cyberthreats to the water sector. Although the emergence of new threats, such as ransomware or cryptojacking, was found, a recurrence of similar vulnerabilities and threats, such as insider threats, was also evident, emphasizing the need for an adaptive, cooperative, and comprehensive approach to water cyberdefense.Accepted Author ManuscriptSanitary Engineerin

    Deep learning for detecting macroplastic litter in water bodies: A review

    No full text
    Plastic pollution in water bodies is an unresolved environmental issue that damages all aquatic environments, and causes economic and health problems. Accurate detection of macroplastic litter (plastic items >5 mm) in water is essential to estimate the quantities, compositions and sources, identify emerging trends, and design preventive measures or mitigation strategies. In recent years, researchers have demonstrated the potential of computer vision (CV) techniques based on deep learning (DL) for automated detection of macroplastic litter in water bodies. However, a systematic review to describe the state-of-the-art of the field is lacking. Here we provide such a review, and we highlight current knowledge gaps and suggest promising future research directions. The review compares 34 papers with respect to their application and modeling related criteria. The results show that the researchers have employed a variety of DL architectures implementing different CV techniques to detect macroplastic litter in various aquatic environments. However, key knowledge gaps must be addressed to overcome the lack of: (i) DL-based macroplastic litter detection models with sufficient generalization capability, (ii) DL-based quantification of macroplastic (mass) fluxes and hotspots and (iii) scalable macroplastic litter monitoring strategies based on robust DL-based quantification. We advocate for the exploration of data-centric artificial intelligence approaches and semi-supervised learning to develop models with improved generalization capabilities. These models can boost the development of new methods for the quantification of macroplastic (mass) fluxes and hotspots, and allow for structural monitoring strategies that leverage robust DL-based quantification. While the identified gaps concern all bodies of water, we recommend increased efforts with respect to riverine ecosystems, considering their major role in transport and storage of litter.Sanitary Engineerin

    Generalizing rapid flood predictions to unseen urban catchments with conditional generative adversarial networks

    No full text
    Two-dimensional hydrodynamic models are computationally expensive. This drawback can limit their application to solving problems requiring real-time predictions or several simulation runs. Although the literature presented improvements in using Deep Learning as an alternative to hydrodynamic models, Artificial Neural Networks applications for flood prediction cannot satisfactorily predict floods for areas outside the training datasets with different boundary conditions. In this paper, we used a conditional generative adversarial network (cGAN) aiming to generalize flood predictions in catchments not included in the training process. The proposed method, called cGAN-Flood, uses two cGAN models to solve a rain-on-grid problem by first identifying wet cells and then estimating the water depths. The cGANs were trained using HEC-RAS outputs as ground truth. cGAN-Flood distributes a target flood volume (vt) in a given catchment, which can be calculated via water balance from hydrological simulations. Our approach was trained on ten and tested on five urban catchments with distinct characteristics. The cGAN-Flood was compared to HEC-RAS for different rainfall magnitudes and surface roughness. We also compared our approach to the Weighted Cellular Automata 2D (WCA2D), a rapid flood model (RFM) used for rain-on-grid simulations. Our method successfully predicted water depths in the testing areas, showing that cGAN-Flood could generalize to different locations. However, cGAN-Flood tended to underestimate depths in channels in some areas for events with a small peak of precipitation intensity. cGAN-Flood was 50 and 250 times faster than WCA2D and HEC-RAS, respectively. Due to its computational efficiency and accuracy, we suggest that cGAN-Flood can be applied when fast simulations are necessary, and it can be a viable modeling solution for flood forecasts in large-scale watersheds.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Sanitary Engineerin

    Assessing the performances and transferability of graph neural network metamodels for water distribution systems

    No full text
    Metamodels accurately reproduce the output of physics-based hydraulic models with a significant reduction in simulation times. They are widely employed in water distribution system (WDS) analysis since they enable computationally expensive applications in the design, control, and optimisation of water networks. Recent machine-learning-based metamodels grant improved fidelity and speed; however, they are only applicable to the water network they were trained on. To address this issue, we investigate graph neural networks (GNNs) as metamodels for WDSs. GNNs leverage the networked structure of WDS by learning shared coefficients and thus offering the potential of transferability. This work evaluates the suitability of GNNs as metamodels for estimating nodal pressures in steady-state EPANET simulations. We first compare the effectiveness of GNN metamodels against multi-layer perceptrons (MLPs) on several benchmark WDSs. Then, we explore the transferability of GNNs by training them concurrently on multiple WDSs. For each configuration, we calculate model accuracy and speedups with respect to the original numerical model. GNNs perform similarly to MLPs in terms of accuracy and take longer to execute but may still provide substantial speedup. Our preliminary results indicate that GNNs can learn shared representations across networks, although assessing the feasibility of truly general metamodels requires further work.Sanitary EngineeringMultimedia Computin
    corecore