2,778 research outputs found

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Kondo Metal and Ferrimagnetic Insulator on the Triangular Kagom\'e Lattice

    Full text link
    We obtain the rich phase diagrams in the Hubbard model on the triangular Kagom\'e lattice as a function of interaction, temperature and asymmetry, by combining the cellular dynamical mean-field theory with the continuous time quantum Monte Carlo method. The phase diagrams show the asymmetry separates the critical points in Mott transition of two sublattices on the triangular Kagom\'e lattice and produces two novel phases called plaquette insulator with an obvious gap and a gapless Kondo metal. When the Coulomb interaction is stronger than the critical value Uc, a short range paramagnetic insulating phase, which is a candidate for the short rang resonating valence-bond spin liquid, emerges before the ferrimagnetic order is formed independent of asymmetry. Furthermore, we discuss how to measure these phases in future experiments

    Anisotropic Rabi model

    Full text link
    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counter-rotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counter-rotating terms. The exact energy spectrum and eigenstates of the generalized model is worked out. The solution is obtained as an elaboration of a recent proposed method for the isotropic limit of the model. In this way, we provide a long sought solution of a cascade of models with immediate relevance in different physical fields, including i) quantum optics: two-level atom in single mode cross electric and magnetic fields; ii) solid state physics: electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; iii) mesoscopic physics: Josephson junctions flux-qubit quantum circuits.Comment: 5 pages+ 6 pages supplementary, 7 figures, accepted by Phys. Rev.
    corecore