373 research outputs found

    Realizing quantum optics in structured environments with giant atoms

    Full text link
    To go beyond quantum optics in free-space setups, atom-light interfaces with structured photonic environments are often employed to realize unconventional quantum electrodynamics (QED) phenomena. However, when employed as quantum buses, those long-distance nanostructures are limited by fabrication disorders. In this work, we alternatively propose to realize structured lightmatter interactions by engineering multiple coupling points of hybrid giant atom-conventionalenvironments without any periodic structure. We present a generic optimization method to obtain the real-space coupling sequence for multiple coupling points. We report a broadband chiral emission in a very wide frequency regime, with no analog in other quantum setups. Moreover, we show that the QED phenomena in the band gap environment, such as fractional atomic decay and dipole-dipole interactions mediated by a bound state, can be observed in our setup. Numerical results indicate that our proposal is robust against fabrication disorders of the coupling sequence. Our work opens up a new route for realizing unconventional light-matter interactions.Comment: 19 papges, 12 figure

    An experimental study on the effect of salt spray testing on the optical properties of solar selective absorber coatings produced with different manufacturing technologies

    Get PDF
    Solar selective absorber coating (SSAC) is one of the key components of a solar collector, with its optical properties having a significant impact on the collector’s thermal performance. The key parameters characterizing the optical properties of an SSAC are the solar absorptance (absorptance of solar radiation) and the thermal emittance (emittance for long-wave radiation). However, some of high-performing SSACs suffer from some drawbacks, such as lower durability, lower resistance to corrosion and abrasion, which is particularly harmful for SSACs, as, for example, chlorides in the atmosphere have become a main contributor to corrosion in coastal areas with the increasing trend of global warming. In this paper, salt spray tests have been conducted on the SSACs manufactured by three common manufacturing technologies, i.e., the anode oxidation (AO) technology, the vacuum magnetron sputtering (VMS) technology, and the black chromium plating (BCP) technology, over the testing durations of 12 h, 24 h, 36 h, and 48 h, respectively, to examine the effect of the salt spray testing on the optical properties of SSACs manufactured by different manufacturing technologies. The salt spray testing is an accelerated aging testing method for evaluating the SSAC’s resistance to corrosion when it is under an extended exposure to a saline, or salted, spray (fog). The experimental results show that, in general, the SSACs manufactured by the BCP technology have excellent resistance to salt spray (i.e., to corrosion) and those manufactured by the AO technology have only reasonable resistance to corrosion, whereas the SSACs manufactured by the VMS technology have very poor resistance to corrosion. The results also demonstrate that there are noticeable differences in the optical properties of the SSAC samples even manufactured by the same technology but by different manufacturers, with some having significant differences. The causes for the differences have been further examined through the inspection of the physical appearance of the selected SSAC samples and the experimentally measured distributions of the monochromatic reflectance of solar radiation of the samples over the solar spectrum before and after the salt spray testing over different durations

    One-step synthesis of Lycopodium alkaloid (-)-huperzine W via Suzuki-Miyaura coupling

    Get PDF
    The first total synthesis of (−)-huperzine W (1) has been achieved. Key element of the synthesis is a highly convergent assemblage for the two rings system of target molecule utilizing an efficient Suzuki-Miyaura coupling reaction between chiral iodide 2 and 2-allylpyrrolidinone 4. Evaluation of the AchE inhibition of synthetic huperzine W was also carried out. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/s13659-012-0084-2 and is accessible for authorized users

    A Geometrically Constrained Point Matching based on View-invariant Cross-ratios, and Homography

    Full text link
    In computer vision, finding point correspondence among images plays an important role in many applications, such as image stitching, image retrieval, visual localization, etc. Most of the research worksfocus on the matching of local feature before a sampling method is employed, such as RANSAC, to verify initial matching results via repeated fitting of certain global transformation among the images. However, incorrect matches may still exist, while careful examination of such problems is often skipped. Accordingly, a geometrically constrained algorithm is proposed in this work to verify the correctness of initially matched SIFT keypoints based on view-invariant cross-ratios (CRs). By randomly forming pentagons from these keypoints and matching their shape and location among images with CRs, robust planar region estimation can be achieved efficiently for the above verification, while correct and incorrect matches of keypoints can be examined easily with respect to those shape and location matched pentagons. Experimental results show that satisfactory results can be obtained for various scenes with single as well as multiple planar regions

    Lepton-flavored electroweak baryogenesis

    Get PDF
    We explore lepton-flavored electroweak baryogenesis, driven by CP-violation in leptonic Yukawa sector, using the τ−μ system in the two Higgs doublet model as an example. This setup generically yields, together with the flavor-changing decay h→τμ, a tree-level Jarlskog invariant that can drive dynamical generation of baryon asymmetry during a first-order electroweak phase transition and results in CP-violating effects in the decay h→ττ. We find that the observed baryon asymmetry can be generated in parameter space compatible with current experimental results for the decays h→τμ, h→ττ, and τ→μγ, as well as the present bound on the electric dipole moment of the electron. The baryon asymmetry generated is intrinsically correlated with the CP-violating decay h→ττ and the flavor-changing decay h→τμ, which thus may serve as “smoking guns” to test lepton-flavored electroweak baryogenesis
    corecore