24,270 research outputs found

    Global well-posedness for KdV in Sobolev Spaces of negative index

    Get PDF
    The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in H^s({\mathbb{R}), -3/10<s.Comment: 5 pages. Electronic Journal of Differential equations (submitted

    Information on the Pion Distribution Amplitude from the Pion-Photon Transition Form Factor with the Belle and BaBar Data

    Full text link
    The pion-photon transition form factor (TFF) provides strong constraints on the pion distribution amplitude (DA). We perform an analysis of all existing data (CELLO, CLEO, BaBar, Belle) on the pion-photon TFF by means of light-cone pQCD approach in which we include the next-to-leading order correction to the valence-quark contribution and estimate the non-valence-quark contribution by a phenomenological model based on the TFF's limiting behavior at both Q2→0Q^2\to 0 and Q2→∞Q^2\to\infty. At present, the pion DA is not definitely determined, it is helpful to have a pion DA model that can mimic all the suggested behaviors, especially to agree with the constraints from the pion-photon TFF in whole measured region within a consistent way. For the purpose, we adopt the conventional model for pion wavefunction/DA that has been constructed in our previous paper \cite{hw1}, whose broadness is controlled by a parameter BB. We fix the DA parameters by using the CELLO, CLEO, BABAR and Belle data within the smaller Q2Q^2 region (Q2≤15Q^2 \leq 15 GeV2^2), where all the data are consistent with each other. And then the pion-photon TFF is extrapolated into larger Q2Q^2 region. We observe that the BABAR favors B=0.60B=0.60 which has the behavior close to the Chernyak-Zhitnitsky DA, whereas the recent Belle favors B=0.00B=0.00 which is close to the asymptotic DA. We need more accurate data at large Q2Q^2 region to determine the precise value of BB, and the definite behavior of pion DA can be concluded finally by the consistent data in the coming future.Comment: 6 pages, 5 figures. Slightly changed and references update

    Hamiltonian Theory of Adiabatic Motion of Relativistic Charged Particles

    Full text link
    A general Hamiltonian theory for the adiabatic motion of relativistic charged particles confined by slowly-varying background electromagnetic fields is presented based on a unified Lie-transform perturbation analysis in extended phase space (which includes energy and time as independent coordinates) for all three adiabatic invariants. First, the guiding-center equations of motion for a relativistic particle are derived from the particle Lagrangian. Covariant aspects of the resulting relativistic guiding-center equations of motion are discussed and contrasted with previous works. Next, the second and third invariants for the bounce motion and drift motion, respectively, are obtained by successively removing the bounce phase and the drift phase from the guiding-center Lagrangian. First-order corrections to the second and third adiabatic invariants for a relativistic particle are derived. These results simplify and generalize previous works to all three adiabatic motions of relativistic magnetically-trapped particles.Comment: 20 pages, LaTeX, to appear in Physics of Plasmas (Aug, 2007
    • …
    corecore