4,733 research outputs found

    Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis

    Full text link
    Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitations: 1) it holds only for a fixed dimensionality DD, and thus does not apply when DD and the training sample size NN are proportionally large; 2) it does not provide a quantitative description on how the generalization ability of FLDA is affected by DD and NN. In this paper, we present an asymptotic generalization analysis of FLDA based on random matrix theory, in a setting where both DD and NN increase and D/N⟶γ∈[0,1)D/N\longrightarrow\gamma\in[0,1). The obtained lower bound of the generalization discrimination power overcomes both limitations of the classical result, i.e., it is applicable when DD and NN are proportionally large and provides a quantitative description of the generalization ability of FLDA in terms of the ratio γ=D/N\gamma=D/N and the population discrimination power. Besides, the discrimination power bound also leads to an upper bound on the generalization error of binary-classification with FLDA
    • …
    corecore