19,973 research outputs found
Quantum model for magnetic multivalued recording in coupled multilayers
In this paper, we discuss the possibilities of realizing the magnetic
multi-valued (MMV) recording in a magnetic coupled multilayer. The hysteresis
loop of a double-layer system is studied analytically, and the conditions for
achieving the MMV recording are given. The conditions are studied from
different respects, and the phase diagrams for the anisotropic parameters are
given in the end.Comment: 8 pages, LaTex formatted, 7 figures (those who are interested please
contact the authors requring the figures) Submitted to Physal Review B.
Email: [email protected]
Information on the Pion Distribution Amplitude from the Pion-Photon Transition Form Factor with the Belle and BaBar Data
The pion-photon transition form factor (TFF) provides strong constraints on
the pion distribution amplitude (DA). We perform an analysis of all existing
data (CELLO, CLEO, BaBar, Belle) on the pion-photon TFF by means of light-cone
pQCD approach in which we include the next-to-leading order correction to the
valence-quark contribution and estimate the non-valence-quark contribution by a
phenomenological model based on the TFF's limiting behavior at both
and . At present, the pion DA is not definitely determined, it is
helpful to have a pion DA model that can mimic all the suggested behaviors,
especially to agree with the constraints from the pion-photon TFF in whole
measured region within a consistent way. For the purpose, we adopt the
conventional model for pion wavefunction/DA that has been constructed in our
previous paper \cite{hw1}, whose broadness is controlled by a parameter . We
fix the DA parameters by using the CELLO, CLEO, BABAR and Belle data within the
smaller region ( GeV), where all the data are consistent
with each other. And then the pion-photon TFF is extrapolated into larger
region. We observe that the BABAR favors which has the behavior close
to the Chernyak-Zhitnitsky DA, whereas the recent Belle favors which
is close to the asymptotic DA. We need more accurate data at large region
to determine the precise value of , and the definite behavior of pion DA can
be concluded finally by the consistent data in the coming future.Comment: 6 pages, 5 figures. Slightly changed and references update
Accurate numerical solution to the finite-size Dicke model
By using extended bosonic coherent states, a new technique to solve the Dicke
model exactly is proposed in the numerical sense. The accessible system size is
two orders of magnitude higher than that reported in literature. Finite-size
scaling for several observables, such as the ground-state energy, Berry phase,
and concurrence are analyzed. The existing discrepancy for the scaling exponent
of the concurrence is reconciled.Comment: 4 pages, 5 figures. Phys. Rev. A (in press, a Rapid Communication
The Importance of Charge Redistribution during Electrochemical Reactions: A Density Functional Theory Study of Silver Orthophosphate (Ag3PO4)
The structural sensitivity of silver orthophosphate (Ag 3 PO 4 ) for photo-electrochemical water oxidation on (100), (110) and (111) surfaces has recently been reported by experimental studies (D. J. Martin et al., Energy Environ. Sci., 2013, 6, 3380-3386). The (111) surface showed the highest performance with an oxygen evolution rate of 10 times higher than the other surfaces. The high performance of the (111) surface was attributed to high hole mobility, high surface energy and, in a recent theoretical study (Z. Ma et al., RSC Adv., 2017, 7, 23994-24003), to a lower OH adsorption energy and the band structure. The investigations are based on a few structures and a full atomistic picture of the Ag 3 PO 4 under electrochemical reactions is still missing. Therefore, we report here a systematic study of the oxygen evolution reaction (OER) of Ag 3 PO 4 (100), (110), and (111) surfaces by density functional theory (DFT) calculations. Through a detailed investigation of the reaction energies and the overpotentials of OER on all possible surface orientations with all possible terminations and different involvement of Ag adsorption sites, we can confirm that (111) surfaces are highly active. However, surface orientation was not found to exclusively determine the electrochemical activity; neither did the number of Ag atoms involved in the adsorption of the intermediate species nor the type of surface termination or the different potential determining reaction steps. By using Bader charge analysis and investigation of the charge redistribution during OER, we found that the highest activity, i.e. lowest overpotential, is related to the charge redistribution of two OER steps, namely the O ad and the HOO ad formation. If the charge redistribution between these steps is small, then the overpotential is small and, hence, the activity is high. Charge redistributions are usually small for the (111) surface and therefore the (111) surface is usually the most active one. The concept of charge redistribution being decisive for the high activity of Ag 3 PO 4 may open a new design strategy for materials with highly efficient electrochemical surfaces.</p
Performance of a multichannel active sound radiation control system near a reflecting surface
© 2017 Elsevier Ltd Prior research shows that introducing a reflecting surface near an active control system can improve its noise reduction performance; however the mechanism of the performance improvement is not completely clear. This paper investigates the effects of a reflecting surface on multichannel active sound radiation control systems with a primary monopole source located on the surface. By using a genetic searching algorithm, the locations of secondary sources were optimized to maximize the noise reduction and the frequency range that can be beneficial from the reflecting surface is discussed. It is found that the performance improvement by introducing a reflecting surface is due to the increased sound pressure generated by the secondary sources at the primary source location. The beneficial frequency range extends with the number of the channels of the control system and has an upper limit frequency determined by the distance between the secondary sources and the primary source. Experiments are conducted to validate the results
Mechanisms of active control of sound radiation from an opening with boundary installed secondary sources
© 2018 Acoustical Society of America. Previous work has demonstrated that installing secondary sources at the edge of a cavity opening can reduce sound radiation through it, but the mechanisms are not clear, which is investigated in this paper by using the modal decomposition method. It is found that a double layer edge system achieves better performance than a single layer system because secondary sources at the edge of the same layer cannot excite some modes effectively and those at different heights compensate this. There exists an upper limit frequency for the systems with boundary installed secondary sources, which is mainly decided by the length of the short side of the opening. More secondary source layers at the edge will increase the upper limit frequency
- …