31 research outputs found

    Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation

    No full text
    In this paper, we begin by describing the Starlink constellation’s configuration plan, treating each satellite as a network node, naming and numbering the various nodes, and then classifying the laser interstellar links (LISLs) according to their orbital alignment and whether they are permanently visible. Whereupon, the method for calculating the respective theoretical interstellar distances required for establishing LISLs under two distinct orbital scenarios, co-orbital and hetero-orbital are analyzed, and the optimal phasing factors are proposed by solving an optimization algorithm for the shortest distance. The OneWeb and Starlink constellations, as well as the constellation states of various phasing factors are simulated, respectively. The Starlink constellation with F = 11 obtains the best coverage between 60° north and south latitudes predicated upon the analysis of the constellation N Asset Coverage. Following that, the first phase of the Starlink constellation deployment was modeled in order to analyze and count the number of permanent LISLs in orbit, adjacent to, and nearby. Subsequently, the characteristics of azimuthal, elevation, and range (AER) were subsequently analyzed to ascertain their variation law and to compile the number of permanent and temporary LISLs that could be established at various inter-distance ranges. Finally, predicated on the simulation results, the optimal LISLs connection strategy for the Starlink constellation is evaluated and a static topology for the constellation is constructed

    Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation

    No full text
    In this paper, we begin by describing the Starlink constellation’s configuration plan, treating each satellite as a network node, naming and numbering the various nodes, and then classifying the laser interstellar links (LISLs) according to their orbital alignment and whether they are permanently visible. Whereupon, the method for calculating the respective theoretical interstellar distances required for establishing LISLs under two distinct orbital scenarios, co-orbital and hetero-orbital are analyzed, and the optimal phasing factors are proposed by solving an optimization algorithm for the shortest distance. The OneWeb and Starlink constellations, as well as the constellation states of various phasing factors are simulated, respectively. The Starlink constellation with F = 11 obtains the best coverage between 60° north and south latitudes predicated upon the analysis of the constellation N Asset Coverage. Following that, the first phase of the Starlink constellation deployment was modeled in order to analyze and count the number of permanent LISLs in orbit, adjacent to, and nearby. Subsequently, the characteristics of azimuthal, elevation, and range (AER) were subsequently analyzed to ascertain their variation law and to compile the number of permanent and temporary LISLs that could be established at various inter-distance ranges. Finally, predicated on the simulation results, the optimal LISLs connection strategy for the Starlink constellation is evaluated and a static topology for the constellation is constructed

    Grassland Health in Xilin Gol League from the Perspective of Machine Learning—Analysis of Grazing Intensity on Grassland Sustainability

    No full text
    As one of the most widespread and important types of terrestrial vegetation in the world, grasslands play an irreplaceable role in global climate change. The grasslands of Inner Mongolia, represented by the Xilin Gol League, are typical of Eurasian grasslands and have an important ecological status in the world. In this paper, taking the grassland of Xilin Gol League as the research object, based on the machine learning method, we mainly carry out two aspects of work: the prediction of grassland soil health and evaluation of grassland sustainable development. To address the issue of predicting soil health in grasslands, we focus on an important indicator in grasslands: soil moisture. By analyzing the characteristics of soil moisture time series values and related influencing factors, based on a NAR neural network model, three important factors of soil moisture were predicted: soil evaporation data, average air temperature, and precipitation. Subsequently, the corresponding soil moisture calculation model was trained using regression models based on hyperparameter optimization, and the final predicted soil moisture values were obtained for different months and depths in 2023 and 2024. To evaluate the sustainability of grassland development, we developed a model for the degree of grassland desertification based on the kernel principal component analysis, focusing on three dimensions: environmental factors, surface factors, and human factors. Based on this, a quantitative definition of soil denudation is given by analyzing the main influencing factors of grassland soil degradation. At the same time, a prediction model for the evaluation of soil slumping was established based on a fuzzy comprehensive evaluation matrix, and the evaluation weights of each major factor were given and analyzed. Based on the above research, this paper suggests a reasonable grazing strategy for the grassland areas of the Xilin Gol League: when the grazing intensity is medium and the total number of grazing days is [85, 104] days in a year, the degree of soil slumping and soil desertification in the pastures is minimized. The research results of this paper are useful for the future maintenance and management of the grasslands of Xilin Gol League and other similar areas

    Fraud prevention in online digital advertising

    No full text

    Impact of Mega Constellations on Geospace Safety

    No full text
    The extent of the impact of mega constellations on the low-orbiting geospace environment, which has not yet been assessed in more concrete quantitative terms, is an extremely important issue to consider as mega constellations are built. Satellite safety and lifetime can clearly represent the situation of space targets, and thus can reflect the impact of mega constellations on geospace security. Three target satellites with different characteristics were selected and the Accepted Collision Probability Level (ACPL) was calculated to obtain the impact of Starlink on satellite mission lifetime. Upon considering Starlink without early avoidance control, the lifetimes of the three target satellites were shortened by 56.21%, 99.09%, and 99.82%, respectively. After 10 revolutions of early avoidance control, two were shortened to 92.166% and 91.99%, while the lifetime of JILIN-01 was extended by 155.44%. After joining Starlink, the total risk became larger; even if the target satellite avoided control far more frequently than before joining Starlink, it will face a worse geospace environment. Adopting the most aggressive orbit avoidance control cannot avoid the deterioration of the geospace environment from the perspective of satellite lifetime, which is an irreversible and deteriorating process

    Impact of Mega Constellations on Geospace Safety

    No full text
    The extent of the impact of mega constellations on the low-orbiting geospace environment, which has not yet been assessed in more concrete quantitative terms, is an extremely important issue to consider as mega constellations are built. Satellite safety and lifetime can clearly represent the situation of space targets, and thus can reflect the impact of mega constellations on geospace security. Three target satellites with different characteristics were selected and the Accepted Collision Probability Level (ACPL) was calculated to obtain the impact of Starlink on satellite mission lifetime. Upon considering Starlink without early avoidance control, the lifetimes of the three target satellites were shortened by 56.21%, 99.09%, and 99.82%, respectively. After 10 revolutions of early avoidance control, two were shortened to 92.166% and 91.99%, while the lifetime of JILIN-01 was extended by 155.44%. After joining Starlink, the total risk became larger; even if the target satellite avoided control far more frequently than before joining Starlink, it will face a worse geospace environment. Adopting the most aggressive orbit avoidance control cannot avoid the deterioration of the geospace environment from the perspective of satellite lifetime, which is an irreversible and deteriorating process

    Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China

    No full text
    Deteriorating lake water quality has become a serious environmental issue around the globe. Heavy metals dissolved in the overlying water of lakes are notably more toxic than those found in lake sediment. Given this, we sought to better understand the characteristics of particular major ion and dissolved heavy metal in Dongting Lake-the second largest freshwater lake in China. Overlying water samples were collected from Dongting Lake to investigate the major ion geochemistry and to examine the relationship between the major ions and dissolved heavy metals. Chemical analysis of the overlying water showed that the average cation concentration was the highest for Ca2+, followed by Mg2+, Na+, and K+. Similarly, the highest anion concentration was SO42-, followed by Cl-, NO3-, and HCO3-. Total dissolved solids in the overlying water of Dongting Lake ranged from 66.19 to 159.20 mg/L, with an average value of 93.13 mg/L. The predominant hydrochemical type was Ca-SO4. The mean concentrations of dissolved heavy metal in both surface and deep waters decreased in the following order: Zn > Cr > Ni > Cu > Pb > Cd. Importantly, all of the selected heavy metals tested in the overlying water were lower than the corresponding toxicity reference values. Co-occurrence network analyses were performed and compared the correlations between all measured major ions and heavy metals. Results of the subsequent principal component analyses revealed that heavy metal levels in the aquatic environment primarily originated from natural processes and were enhanced by anthropogenic activities
    corecore