2,672 research outputs found
Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach
A major quest in cosmology is the understanding of the nature of dark energy.
It is now well known that a combination of cosmological probes is required to
break the underlying degeneracies on cosmological parameters. In this paper, we
present a method, based on a frequentist approach, to combine probes without
any prior constraints, taking full account of the correlations in the
parameters. As an application, a combination of current SNIa and CMB data with
an evolving dark energy component is first compared to other analyses. We
emphasise the consequences of the implementation of the dark energy
perturbations on the result for a time varying equation of state. The impact of
future weak lensing surveys on the measurement of dark energy evolution is then
studied in combination with future measurements of the cosmic microwave
background and type Ia supernovae. We present the combined results for future
mid-term and long-term surveys and confirm that the combination with weak
lensing is very powerful in breaking parameter degeneracies. A second
generation of experiment is however required to achieve a 0.1 error on the
parameters describing the evolution of dark energy.Comment: Submitted to Astronomy & Astrophysics 14 pages, 8 figure
A branched luminescent multinuclear platinum(II) complex
Nonlinear optical properties of luminescent multinuclear platinum(II) complex of branched alkynyls in benzene solution are investigated at room temperature by using two-photon fluorescence (TPF) technique. It is found that the material shows unusual nonlinear optical characteristics under the excitation of near infrared femtosecond laser pulses. The self-focusing of laser beam energy during propagation of the laser pulses in the sample with large nonlinear coefficient for the refractive index is observed. Based on this phenomenon, a new method for measuring the nonlinear coefficient and two-photon absorption cross section of materials is proposed. © 2011 American Institute of Physics.published_or_final_versio
Lattice-point enumerators of ellipsoids
Minkowski's second theorem on successive minima asserts that the volume of a
0-symmetric convex body K over the covolume of a lattice \Lambda can be bounded
above by a quantity involving all the successive minima of K with respect to
\Lambda. We will prove here that the number of lattice points inside K can also
accept an upper bound of roughly the same size, in the special case where K is
an ellipsoid. Whether this is also true for all K unconditionally is an open
problem, but there is reasonable hope that the inductive approach used for
ellipsoids could be extended to all cases.Comment: 9 page
Spectrum of non-Hermitian heavy tailed random matrices
Let (X_{jk})_{j,k>=1} be i.i.d. complex random variables such that |X_{jk}|
is in the domain of attraction of an alpha-stable law, with 0< alpha <2. Our
main result is a heavy tailed counterpart of Girko's circular law. Namely,
under some additional smoothness assumptions on the law of X_{jk}, we prove
that there exists a deterministic sequence a_n ~ n^{1/alpha} and a probability
measure mu_alpha on C depending only on alpha such that with probability one,
the empirical distribution of the eigenvalues of the rescaled matrix a_n^{-1}
(X_{jk})_{1<=j,k<=n} converges weakly to mu_alpha as n tends to infinity. Our
approach combines Aldous & Steele's objective method with Girko's Hermitization
using logarithmic potentials. The underlying limiting object is defined on a
bipartized version of Aldous' Poisson Weighted Infinite Tree. Recursive
relations on the tree provide some properties of mu_alpha. In contrast with the
Hermitian case, we find that mu_alpha is not heavy tailed.Comment: Expanded version of a paper published in Communications in
Mathematical Physics 307, 513-560 (2011
Dissociation energy of the hydrogen molecule at 10 accuracy
The ionization energy of ortho-H has been determined to be
cm
from measurements of the GK(1,1)--X(0,1) interval by Doppler-free two-photon
spectroscopy using a narrow band 179-nm laser source and the ionization energy
of the GK(1,1) state by continuous-wave near-infrared laser spectroscopy.
(H) was used to derive the dissociation energy of
H, (H), at cm with a
precision that is more than one order of magnitude better than all previous
results. The new result challenges calculations of this quantity and represents
a benchmark value for future relativistic and QED calculations of molecular
energies.Comment: 6 pages, 5 figure
Influence of indium-tin-oxide thin-film quality on reverse leakage current of indium-tin-oxide/n-GaN Schottky contacts
Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Phylogenetic Analysis and Rapid Identification of the Whitefly, Bemisia afer, in China
The phylogenetic relationship between the whitefly Bemisia afer (Priesner & Hosny) (Hemiptera: Aleyrodidae) from China and other populations among the world were analyzed based on the mitochondrial cytochrome oxidase I (mtCOI) gene. Phylogenetic analysis of mtCOI sequences and those of reference B. afer sequences showed that the populations of the species could be separated into 5 clades (I–V). There were at least two clades of the species from China (IV and V). These data suggested that B. afer might be a species complex. The Chinese B. afer populations were most divergent with B. afer from the United Kingdom and African countries. The distance between the Chinese B. afer (IV and V) and clades I, II, and III is more than 32%, while the distance among clades I, II, III is lower than 7.7%. A new set of primers specific to B. afer was designed to amplify a region of approximately 400 bp to discriminate B. afer from other Bemisia species in China based on mtCOI sequences
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?
The c-axis tunneling matrix of high-Tc superconductors is shown to depend
strongly on the in-plane momentum of electrons and vanish along the four nodal
lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix
suppresses completely the contribution of the most extended quasiparticles in
the vortex core to the c-axis tunneling current and leads to a spectrum similar
to that of a nodeless superconductor. Our results give a natural explanation of
the absence of the zero bias peak as well as other features observed in the
vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev
Incoherent Pair Tunneling as a Probe of the Cuprate Pseudogap
We argue that incoherent pair tunneling in a cuprate superconductor junction
with an optimally doped superconducting and an underdoped normal lead can be
used to detect the presence of pairing correlations in the pseudogap phase of
the underdoped lead. We estimate that the junction characteristics most
suitable for studying the pair tunneling current are close to recently
manufactured cuprate tunneling devices.Comment: ReVTeX 3.1; 4 pages, 2 EPS figures (included
- …