2 research outputs found

    Alg{\i}lanan Stres Testinin Makine \"O\u{g}renmesi ile Analiz Edilmesi

    Full text link
    The aim of this study is to reanalyze the perceived stress test using machine learning to determine the perceived stress levels of 150 individuals and measure the impact of the test questions. The test consists of 14 questions, each scored on a scale of 0 to 4, resulting in a total score range of 0-56. Out of these questions, 7 are formulated in a negative context and scored accordingly, while the remaining 7 are formulated in a positive context and scored in reverse. The test is also designed to identify two sub-factors: perceived self-efficacy and stress/discomfort perception. The main objectives of this research are to demonstrate that test questions may not have equal importance using artificial intelligence techniques, reveal which questions exhibit variations in the society using machine learning, and ultimately demonstrate the existence of distinct patterns observed psychologically. This study provides a different perspective from the existing psychology literature by repeating the test through machine learning. Additionally, it questions the accuracy of the scale used to interpret the results of the perceived stress test and emphasizes the importance of considering differences in the prioritization of test questions. The findings of this study offer new insights into coping strategies and therapeutic approaches in dealing with stress. Source code: https://github.com/toygarr/ppl-r-stressedComment: in Turkish languag

    Beyond Known Reality: Exploiting Counterfactual Explanations for Medical Research

    Full text link
    This study employs counterfactual explanations to explore "what if?" scenarios in medical research, with the aim of expanding our understanding beyond existing boundaries. Specifically, we focus on utilizing MRI features for diagnosing pediatric posterior fossa brain tumors as a case study. The field of artificial intelligence and explainability has witnessed a growing number of studies and increasing scholarly interest. However, the lack of human-friendly interpretations in explaining the outcomes of machine learning algorithms has significantly hindered the acceptance of these methods by clinicians in their clinical practice. To address this, our approach incorporates counterfactual explanations, providing a novel way to examine alternative decision-making scenarios. These explanations offer personalized and context-specific insights, enabling the validation of predictions and clarification of variations under diverse circumstances. Importantly, our approach maintains both statistical and clinical fidelity, allowing for the examination of distinct tumor features through alternative realities. Additionally, we explore the potential use of counterfactuals for data augmentation and evaluate their feasibility as an alternative approach in medical research. The results demonstrate the promising potential of counterfactual explanations to enhance trust and acceptance of AI-driven methods in clinical settings
    corecore