25 research outputs found

    Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO

    Full text link
    There is strong astrophysical evidence that dark matter (DM) makes up some 27% of all mass in the universe. Yet, beyond gravitational interactions, little is known about its properties or how it may connect to the Standard Model. Multiple frameworks have been proposed, and precision measurements at low energy have proven useful to help restrict the parameter space for many of these models. One set of models predicts that DM is a scalar field that "clumps" into regions of high local density, rather than being uniformly distributed throughout the galaxy. If this DM field couples to the Standard Model, its interaction with matter can be thought of as changing the effective values of fundamental constants. One generic consequence of time variation of fundamental constants (or their spatial variation as the Earth passes through regions of varying density) is the presence of an anomalous, composition-dependent acceleration. Here we show how this anomalous acceleration can be measured using superconducting accelerometers, and demonstrate that >20 years of archival data from the International Geodynamics and Earth Tide Services (IGETS) network can be utilized to set new bounds on these models. Furthermore, we show how LIGO and other gravitational wave detectors can be used as exquisitely sensitive probes for narrow ranges of the parameter space. While limited to DM models that feature spatial gradients, these two techniques complement the networks of precision measurement devices already in use for direct detection and identification of dark matter

    Optical atomic coherence at the one-second time scale

    Full text link
    Highest resolution laser spectroscopy has generally been limited to single trapped ion systems due to rapid decoherence which plagues neutral atom ensembles. Here, precision spectroscopy of ultracold neutral atoms confined in a trapping potential shows superior optical coherence without any deleterious effects from motional degrees of freedom, revealing optical resonance linewidths at the hertz level with an excellent signal to noise ratio. The resonance quality factor of 2.4 x 10^{14} is the highest ever recovered in any form of coherent spectroscopy. The spectral resolution permits direct observation of the breaking of nuclear spin degeneracy for the 1S0 and 3P0 optical clock states of 87Sr under a small magnetic bias field. This optical NMR-like approach allows an accurate measurement of the differential Lande g-factor between the two states. The optical atomic coherence demonstrated for collective excitation of a large number of atoms will have a strong impact on quantum measurement and precision frequency metrology.Comment: in press (2006

    Systematic study of the 87^{87}Sr clock transition in an optical lattice

    Full text link
    With ultracold 87^{87}Sr confined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to-date of the 1S0^1S_0 - 3P0^3P_0 optical clock transition with a detailed analysis of systematic shifts (20 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 867 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its Hz-level linewidth characterized across the optical spectrum using a femtosecond frequency comb.Comment: 4 pages, 4 figures, 1 tabl
    corecore