6 research outputs found

    Thermal Stability Threshold for Amyloid Formation in Light Chain Amyloidosis

    Get PDF
    Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis

    Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis.

    Get PDF
    BACKGROUND: The amyloidoses are protein misfolding diseases characterized by the deposition of amyloid that leads to cell death and tissue degeneration. In immunoglobulin light chain amyloidosis (AL), each patient has a unique monoclonal immunoglobulin light chain (LC) that forms amyloid deposits. Somatic mutations in AL LCs make these proteins less thermodynamically stable than their non-amyloidogenic counterparts, leading to misfolding and ultimately the formation of amyloid fibrils. We hypothesize that location rather than number of non-conservative mutations determines the amyloidogenicity of light chains. METHODOLOGY/PRINCIPAL FINDINGS: We performed sequence alignments on the variable domain of 50 kappa and 91 lambda AL light chains and calculated the number of non-conservative mutations over total number of patients for each secondary structure element in order to identify regions that accumulate non-conservative mutations. Among patients with AL, the levels of circulating immunoglobulin free light chain varies greatly, but even patients with very low levels can have very advanced amyloid deposition. CONCLUSIONS: Our results show that in specific secondary structure elements, there are significant differences in the number of non-conservative mutations between normal and AL sequences. AL sequences from patients with different levels of secreted light chain have distinct differences in the location of non-conservative mutations, suggesting that for patients with very low levels of light chains and advanced amyloid deposition, the location of non-conservative mutations rather than the amount of free light chain in circulation may determine the amyloidogenic propensity of light chains

    In vivo genome editing using a high-efficiency TALEN system

    No full text
    The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease using a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications1–5. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show this enhanced TALEN toolkit demonstrates a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino (MO)-based targeted gene knockdowns6. With this updated TALEN system, we successfully used single-stranded DNA (ssDNA) oligonucleotides (oligos) to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair (HDR), including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.This is a manuscript of an article published as Bedell, V., Wang, Y., Campbell, J. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118 (2012). doi: 10.1038/nature11537. Posted with permission.</p
    corecore