6 research outputs found

    Inhibition of Macrophage Migration Inhibitory Factor Ameliorates Ocular Pseudomonas aeruginosa-Induced Keratitis

    Get PDF
    Pseudomonas aeruginosa causes severe sight-threatening corneal infections, with the inflammatory response to the pathogen being the major factor resulting in damage to the cornea that leads to loss of visual acuity. We found that mice deficient for macrophage migration inhibitory factor (MIF), a key regulator of inflammation, had significantly reduced consequences from acute P. aeruginosa keratitis. This improvement in the outcome was manifested as improved bacterial clearance, decreased neutrophil infiltration, and decreased inflammatory responses when P. aeruginosa-infected MIF knock out (KO) mice were compared to infected wild-type mice. Recombinant MIF applied to infected corneas restored the susceptibility of MIF deficient mice to P. aeruginosa-induced disease, demonstrating that MIF is necessary and sufficient to cause significant pathology at this immune privileged site. A MIF inhibitor administered during P. aeruginosa-induced infection ameliorated the disease-associated pathology. MIF regulated epithelial cell responses to infection by enhancing synthesis of proinflammatory mediators in response to P. aeruginosa infection and by promoting bacterial invasion of corneal epithelial cells, a correlate of virulence in the keratitis model. Our results uncover a host factor that elevates inflammation and propagates bacterial cellular invasion, and further suggest that inhibition of MIF during infection may have a beneficial therapeutic effect

    Genetically abnormal circulating cells in lung cancer patients: An antigen-independent fluorescence in situ hybridization-based case-control study

    No full text
    Purpose—We performed a study to determine if a fluorescence in-situ hybridization (FISH)-based assay using isolated peripheral blood mononuclear cells (PBMCs) with DNA probes targeting specific sites on chromosomes known to have abnormalities in Non Small Cell Lung Cancer (NSCLC) cases could detect circulating genetically abnormal cells (CACs). Experimental Design—We evaluated 59 NSCLC cases with stage I through IV disease and 24 controls. PBMCs and matched tumors were hybridized with 2 two-color (3p22.1/CEP3 and 10q22.3 [SP-A]/CEP10) and 2 four-color (CEP3, CEP7, CEP17, and 9p21.3 [URO]) and (EGFR, c-MYC, 6p11-q11, and 5p15.2 [LAV]) FISH probes. Percentages of cytogenetically abnormal cells (CACs) in peripheral blood and in matched tumor specimens were quantified using an automated fluorescent scanner. Numbers of CACs were calculated based on the percentage of CACs (defined as PBMCs with genetic abnormalities) per mL of blood and expressed per microliter of blood. Results—Patients with NSCLC had significantly higher numbers of CACs than did controls. Mean number of CACs ranged from 7.23±1.32/μl for deletions of 10q22.3/CEP10 to 45.52±7.49/μl for deletions of 3p22.1/CEP3. Numbers of CACs with deletions of 3p22.1, 10q22.3, and 9p21.3, an
    corecore