173 research outputs found

    PPARγ deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution

    Get PDF
    Background: Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear hormone receptor that regulates gene expression, cell proliferation and differentiation. We previously described airway epithelial cell PPARγ deficient mice that develop airspace enlargement with decreased tissue resistance and increased lung volumes. We sought to understand the impact of airspace enlargement in conditionally targeted mice upon the physio-mechanical properties of the lung. Methods: We measured elastic recoil and its determinants, including tissue structure and surface forces. We measured alveolar number using radial alveolar counts, and airspace sizes and their distribution using computer-assisted morphometry. Results: Air vs. saline-filled pressure volume profiles demonstrated loss of lung elastic recoil in targeted mice that was contributed by both tissue components and surface tension, but was proportional to lung volume. There were no significant differences in surfactant quantity/function nor in elastin and collagen content between targeted animals and littermate controls. Importantly, radial alveolar counts were significantly reduced in the targeted animals and at 8 weeks of age there were 18% fewer alveoli with 32% more alveolar ducts. Additionally, the alveolar ducts were 19% larger in the targeted animals. Conclusions: Our data suggest that the functional abnormalities, including loss of recoil are secondary to altered force transmission due to differences in the structure of alveolar ducts, rather than changes in surfactant function or elastin or collagen content. These data further define the nature of abnormal lung maturation in the absence of airway epithelial cell PPARγ and identify a putative genetic determinant of dysanapsis, which may serve as a precursor to chronic lung disease

    Mode of Effective Connectivity within a Putative Neural Network Differentiates Moral Cognitions Related to Care and Justice Ethics

    Get PDF
    BACKGROUND: Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. METHODOLOGY/PRINCIPAL FINDINGS: Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. CONCLUSIONS/SIGNIFICANCE: These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses

    The role of leptin in the respiratory system: an overview

    Get PDF
    Since its cloning in 1994, leptin has emerged in the literature as a pleiotropic hormone whose actions extend from immune system homeostasis to reproduction and angiogenesis. Recent investigations have identified the lung as a leptin responsive and producing organ, while extensive research has been published concerning the role of leptin in the respiratory system. Animal studies have provided evidence indicating that leptin is a stimulant of ventilation, whereas researchers have proposed an important role for leptin in lung maturation and development. Studies further suggest a significant impact of leptin on specific respiratory diseases, including obstructive sleep apnoea-hypopnoea syndrome, asthma, COPD and lung cancer. However, as new investigations are under way, the picture is becoming more complex. The scope of this review is to decode the existing data concerning the actions of leptin in the lung and provide a detailed description of leptin's involvement in the most common disorders of the respiratory system

    A Critical Role for Muscle Ring Finger-1 in Acute Lung Injury–associated Skeletal Muscle Wasting

    Get PDF
    Rationale: Acute lung injury (ALI) is a debilitating condition associated with severe skeletal muscle weakness that persists in humans long after lung injury has resolved. The molecular mechanisms underlying this condition are unknown
    corecore