587 research outputs found

    Effect of the shape anisotropy on the magnetic configuration of (Ga,Mn)As and its evolution with temperature

    Full text link
    We study the effect of the shape anisotropy on the magnetic domain configurations of a ferromagnetic semiconductor (Ga,Mn)As/GaAs(001) epitaxial wire as a function of temperature. Using magnetoresistance measurements, we deduce the magnetic configurations and estimate the relative strength of the shape anisotropy compared with the intrinsic anisotropies. Since the intrinsic anisotropy is found to show a stronger temperature dependence than the shape anisotropy, the effect of the shape anisotropy on the magnetic domain configuration is relatively enhanced with increasing temperature. This information about the shape anisotropy provides a practical means of designing nanostructured spin electronic devices using (Ga,Mn)As.Comment: 4 pages, 4 figures, to appear in J. Appl. Phy

    Ion Irradiation Control of Ferromagnetism in (Ga,Mn)As

    Full text link
    We report on a promising approach to the artificial modification of ferromagnetic properties in (Ga,Mn)As using a Ga+^+ focused ion beam (FIB) technique. The ferromagnetic properties of (Ga,Mn)As such as magnetic anisotropy and Curie temperature can be controlled using Ga+^+ ion irradiation, originating from a change in hole concentration and the corresponding systematic variation in exchange interaction between Mn spins. This change in hole concentration is also verified using micro-Raman spectroscopy. We envisage that this approach offers a means of modifying the ferromagnetic properties of magnetic semiconductors on the micro- or nano-meter scale.Comment: 4 pages, 4 figures, to appear in Jpn. J. Appl. Phys. (Part 2 Letters

    Effect of Ga+^{+} irradiation on magnetic and magnetotransport properties in (Ga,Mn)As epilayers

    Full text link
    We report on the magnetic and magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As modified by Ga+^{+} ion irradiation using focused ion beam. A marked reduction in the conductivity and the Curie temperature is induced after the irradiation. Furthermore, an enhanced negative magnetoresistance (MR) and a change in the magnetization reversal process are also demonstrated at 4 K. Raman scattering spectra indicate a decrease in the concentration of hole carriers after the irradiation, and a possible origin of the change in the magnetic properties is discussed

    Mixed magnetic phases in (Ga,Mn)As epilayers

    Full text link
    Two different ferromagnetic-paramagnetic transitions are detected in (Ga,Mn)As/GaAs(001) epilayers from ac susceptibility measurements: transition at a higher temperature results from (Ga,Mn)As cluster phases with [110] uniaxial anisotropy and that at a lower temperature is associated with a ferromagnetic (Ga,Mn)As matrix with cubic anisotropy. A change in the magnetic easy axis from [100] to [110] with increasing temperature can be explained by the reduced contribution of cubic anisotropy to the magnetic properties above the transition temperature of the (Ga,Mn)As matrix

    Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

    Full text link
    We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads

    Full text link
    We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evidence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.Comment: 4 pages, 3 figure

    Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer

    Full text link
    A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted with a single domain model [Phys. Rev. Lett. 95, 217204 (2005)], and the magnetic relaxation, which is similar to that seen in magnetic particles and granular systems, is becoming significant at temperatures above the lower-temperature peak in the temperature dependence of ac susceptibility, supporting the cluster/matrix model reported in our previous work [Phys. Rev. Lett. 94, 147203 (2005)]. Cole-Cole analysis reveals that magnetic interactions between such (Ga,Mn)As clusters are significant at temperatures below the higher-temperature peak in the temperature dependent ac susceptibility. The magnetizations of these films disappear above the temperature showing the higher-temperature peak, which is generally referred to as the Curie temperature. However, we suggest that these combined results are evidence that the temperature is actually the blocking temperature of (Ga,Mn)As clusters with a relatively high hole concentration compared to the (Ga,Mn)As matrix.Comment: 8 pages, 7 figures, to appear in Phys. Rev.
    • …
    corecore