12 research outputs found

    Swallowing Gel for Patients with Dysphagia: A Novel Application of Chitosan

    No full text
    Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80–120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel’s rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa⸱s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel’s effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3–7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia

    Chitosan in Oral Drug Delivery Formulations: A Review

    No full text
    Nanoformulations have become increasingly useful as drug delivery technologies in recent decades. As therapeutics, oral administration is the most common delivery method, although it is not always the most effective route because of challenges with swallowing, gastrointestinal discomfort, low solubility, and poor absorption. One of the most significant barriers that medications must overcome to exert a therapeutic effect is the impact of the first hepatic transit. Studies have shown that controlled-release systems using nanoparticles composed of biodegradable natural polymers significantly improve oral administration, which is why these materials have attracted significant attention. Chitosan possesses a wide variety of properties and functions in the pharmaceutical as well as healthcare industries. Drug encapsulation and transport within the body are two of its most important features. Moreover, chitosan can enhance drug efficacy by facilitating drug interaction with target cells. Based on its physicochemical properties, chitosan can potentially be synthesized into nanoparticles, and this review summarizes recent advances and applications of orally delivered chitosan nanoparticle interventions

    Development and Evaluation of MCC-SiO2/CMC-SiO2 Conjugates as Tablet Super-Disintegrants

    No full text
    In the present study, microcrystallinecellulose–colloidal silicon dioxide (MCC-SiO2) and carboxymethylcellulose–colloidal silicon dioxide (CMC-SiO2) conjugates have been investigated as superdisintegrants in fast dissolving tablets (FDTs). MCC-SiO2 and CMC-SiO2 conjugates were prepared and micromeritic studies, FTIR, SEM and XRD methods were utilized for characterizing the powdered conjugates. The conjugates were used for the preparation of domperidone FDTs by direct compression and the wetting time, water absorption ratio, disintegration time and in vitro drug release were evaluated. Effective pore radius of MCC-SiO2 and CMC-SiO2 conjugates for 1:1, 1:2.5 and 1:5 was found to be 13.35 ± 0.31 µm, 15.66 ± 0.17 µm and 18.38 ± 0.44 µm, and 16.81 ± 0.24 µm, 20.12 ± 0.39 µm and 26.37 ± 0.24 µm, respectively, compared to 12.21 ± 0.23 µm for MCC and 13.65 ± 0.21 µm for CMC. The results of effective pore radius indicate the wicking capability as well as the disintegration potential of MCC-SiO2 and CMC-SiO2 conjugates over pure MCC and CMC. The results of wetting time, water absorption ratio and disintegration time for MCC-SiO2 conjugates were found to be in the range of 19 ± 1.21 to 30 ± 1.33 s, 42 ± 0.28 to 49 ± 0.47% and 15 ± 2 to 40 ± 1 s, and for CMC-SiO2 conjugates were found to be in the range of 21 ± 1.13 to 40 ± 1.17 s, 42 ± 0.94 to 49 ± 0.57% and 12 ± 2 to 20 ± 3 s, respectively. Conjugation of MCC and CMC with SiO2 led to the formation of a complex with remarkable tablet superdisintegrant potential that could be used in preparing fast disintegrating tablets

    Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization

    No full text
    In this study, we developed a polymeric nanofiber patch (PNP) for topical disease treatment using electrohydrodynamic atomization (EHDA). The nanofibers were prepared using various concentrations of polyvinyl alcohol (PVA) and tamarind seed gum and loaded with clindamycin HCl as a model drug. The precursor polymer solutions were sprayed using the EHDA technique; the EHDA processing parameters were optimized to obtain blank and drug-loaded PNPs. The skin adherence, translucence, and ventilation properties of the prepared PNPs indicated that they are appropriate for topical application. The conductivity of the polymer solution increased with increasing PVA and clindamycin concentrations, and increasing the PVA concentration enhanced the solution viscosity. Based on scanning electron microscopy analysis, the PVA concentration had a pronounced effect on the morphology of the sprayed product. Nanofibers were fabricated successfully when the solution PVA concentration was 10%, 13%, or 15% (w/v). The applied voltage significantly affected the diameters of the prepared nanofibers, and the minimum nanofiber diameter was 163.86 nm. Differential scanning calorimetry and X-ray diffraction analyses indicated that the model drug was dispersed in PVA in an amorphous form. The PNP prepared with a PVA:gum ratio of 9:1 absorbed water better than the PVA-only PNP and the PNP with a PVA:gum ratio of 9.5:0.5. Moreover, the PNPs loaded with clindamycin at concentrations of 1%–3% prohibited the growth of Staphylococcus aureus more effectively than clindamycin gel, a commercially available product. Keywords: Electrohydrodynamic atomization (EHDA), Polymeric nanofiber, Clindamycin, Wound dressin

    Development and Evaluation of Ethosomes Loaded with <i>Zingiber zerumbet</i> Linn Rhizome Extract for Antifungal Skin Infection in Deep Layer Skin

    No full text
    Skin fungal infection is still a serious public health problem due to the high number of cases. Even though medicines are available for this disease, drug resistance among patients has increased. Moreover, access to medicine is restricted in some areas. One of the therapeutic options is herbal medicine. This study aims to develop an ethosome formulation loaded with Zingiber zerumbet (L.) Smith. rhizome extract for enhanced antifungal activity in deep layer skin, which is difficult to cure. Ethosomes were successfully prepared by the cold method, and the optimized formulation was composed of 1% (w/v) phosphatidylcholine and 40% (v/v) ethanol. Transmission electron microscope (TEM) images revealed that the ethosomes had a vesicle shape with a diameter of 205.6–368.5 nm. The entrapment of ethosomes was 31.58% and could inhibit the growth of Candida albicans at a concentration of 312.5 μg/mL. Finally, the ethosome system significantly enhanced the skin penetration and retention of the active compound (zerumbone) compared with the liquid extract. This study showed that Z. zerumbet (L.) rhizome extract could be loaded into ethosomes. The findings could be carried over to the next step for clinical application by conducting further in vivo penetration and permeation tests

    Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler)

    No full text
    The goal of this study was to develop an add-on device for dry powder inhalers (Accuhaler) via 3D printing to improve drug administration efficiency in patients with limited inspiratory capacity, including young children, the elderly, and those with chronic obstructive pulmonary disease. With salmeterol xinafoate and fluticasone propionate as model active pharmaceutical ingredients (API), the emitted API doses were used to assess the effectiveness of the add-on device. The APIs were quantified by an HPLC assay validated for specificity, range, linearity, accuracy, and precision. The motor power of the add-on device could be regulated to moderate fan speed and the air flow in the assembled device. When 50–100% of the fan motor power of the add-on device was used, the emitted dose from the attached dry powder inhaler (DPI) was increased. A computational fluid dynamics application was used to simulate the air and particle flow in the DPI with the add-on device in order to elucidate the operating mechanism. The use of the add-on device combined with a sufficient inhalation flow rate resulted in a larger pressure drop and airflow velocity at the blister pocket. As these characteristics are associated with powder fluidization, entrainment, and particle re-suspension, this innovative add-on device might be utilized to enhance the DPI emitted drug dose for patients with low inspiratory rates and to facilitate the provision of adequate drug doses to achieve the treatment outcomes

    Chitosan-Based Polymer Blends for Drug Delivery Systems

    No full text
    Polymers have been widely used for the development of drug delivery systems accommodating the regulated release of therapeutic agents in consistent doses over a long period, cyclic dosing, and the adjustable release of both hydrophobic and hydrophilic drugs. Nowadays, polymer blends are increasingly employed in drug development as they generate more promising results when compared to those of homopolymers. This review article describes the recent research efforts focusing on the utilization of chitosan blends with other polymers in an attempt to enhance the properties of chitosan. Furthermore, the various applications of chitosan blends in drug delivery are thoroughly discussed herein. The literature from the past ten years was collected using various search engines such as ScienceDirect, J-Gate, Google Scholar, PubMed, and research data were compiled according to the various novel carrier systems. Nanocarriers made from chitosan and chitosan derivatives have a positive surface charge, which allows for control of the rate, duration, and location of drug release in the body, and can increase the safety and efficacy of the delivery system. Recently developed nanocarriers using chitosan blends have been shown to be cost-effective, more efficacious, and prolonged release carriers that can be incorporated into suitable dosage forms

    Development and Evaluation of Liquid Plaster Loaded with Chromolaena odorata Leaf Extract Endowed with Several Beneficial Properties to Wound Healing

    No full text
    Liquid plaster (LP) is a recently developed wound dressing product that can be used to cover wounds in various parts of the body, especially small injuries or wounds in body parts involved in movement. Given the benefits and applications of LP, this study aimed to develop and evaluate Chromolaena odorata extract-loaded LP with antimicrobial and hemostasis effects. The study was first conducted through the extraction of Choromolaena odorata leaf by using an ethanol maceration technique and identification of the compounds with high-performance liquid chromatography. The LP loaded with Chromolaena odorata extract demonstrates an ability to inhibit S. aureus and S. epidermidis at a MIC of 0.25 mg/mL and MBC of 0.5 mg/mL. The antioxidant activity test was performed by ABTS and DPPH methods demonstrating the free-radical scavenging activity of the extract. The blood clotting activity was established by varying the concentration of Choromolaena odorata leaf extract from 0.0625 mg/mL to 1 mg/mL. The formulation of the film-forming system was developed by varying the solvent, polymer, and plasticizer proportions. The optimum formulation displayed fast film-forming with high elasticity of the film. Moreover, the 20 mg/mL herbal extract-loaded LP provided an antibacterial effect with admissible water vapor transmission and low skin irritation. As a result, the study demonstrates the possibility of introducing the Chromolaena odorata extract-loaded LP to increase the effectiveness of wound healing and the antibacterial effect on the skin
    corecore