142 research outputs found

    Detection of Dishonest Entities

    Get PDF
    This paper discusses mechanisms to identify dishonest users of services provided by a server in environments where identities of honest users must be kept as their secrets. An anonymous token based mechanism enables the server to identify dishonest users when dishonest events are detected while the users are receiving services, and a homomorhic anonymous token based one enables that even dishonest events can be detected only after the server completed their services and the users had left from the server. A linear equation based encryption algorithm that is used for implementing the above methods is also enhanced

    Oxidative Modification to Cysteine Sulfonic Acid of Cys111 in Human Copper-Zinc Superoxide Dismutase

    Get PDF
    Copper-zinc superoxide dismutase (SOD1) plays a protective role against oxidative stress. On the other hand, recent studies suggest that SOD1 itself is a major target of oxidative damage and has its own pathogenicity in various neurodegenerative diseases, including familial amyotrophic lateral sclerosis. Only human and great ape SOD1s among mammals have the highly reactive free cysteine residue, Cys111, at the surface of the SOD1 molecule. The purpose of this study was to investigate the role of Cys111 in the oxidative damage of the SOD1 protein, by comparing the oxidative susceptibility of recombinant human SOD1 modified with 2-mercaptoethanol at Cys111 (2-ME-SOD1) to wild-type SOD1. Wild-type SOD1 was more sensitive to oxidation by hydrogen peroxide-generating fragments, oligomers, and charge isomers compared with 2-ME-SOD1. Moreover, wild-type SOD1, but not 2-ME-SOD1, generated an upper shifted band in reducing SDS-PAGE even by air oxidation. Using mass spectrometry and limited proteolysis, this upper band was identified as an oxidized subunit of SOD1; the sulfhydryl group (Cys-SH) of Cys111 was selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and to cysteine sulfonic acid (Cys-SO3H). The antibody raised against a synthesized peptide containing Cys111-SO3H reacted with only the Cys111-peroxidized SOD1 by Western blot analysis and labeled Lewy bodylike hyaline inclusions and vacuole rims in the spinal cord of human SOD1-mutated amyotrophic lateral sclerosis mice by immunohistochemical analysis. These results suggest that Cys111 is a primary target for oxidative modification and plays an important role in oxidative damage to human SOD1, including familial amyotrophic lateral sclerosis mutants.This work was supported by Grants-in-aid for Scientific Research 17500242 and 19500313; a Hitech Research Center grant and the 21st Century Centers of Excellence program from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and in part by a Grant for the Research Group on Development of Novel Therapeutics for ALS from the Ministry of Health, Labor and Welfare of Japan. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact

    A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    Get PDF
    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs)

    Visualization of Painful Experiences Believed to Trigger the Activation of Affective and Emotional Brain Regions in Subjects with Low Back Pain

    Get PDF
    In the management of clinical low back pain (LBP), actual damage to lower back areas such as muscles, intervertebral discs etc. are normally targeted for therapy. However, LBP may involve not only sensory pain, but also underlying affective pain which may also play an important role overall in painful events. Therefore we hypothesized that visualization of a painful event may trigger painful memories, thus provoking the affective dimension of pain. The present study investigated neural correlates of affect processing in subjects with LBP (n = 11) and subjects without LBP (n = 11) through the use of virtual LBP stimuli. Whole brain functional magnetic resonance imaging (MRI) was performed for all subjects while they were shown a picture of a man carrying luggage in a half-crouching position. All subjects with LBP reported experiencing discomfort and 7 LBP subjects reported experiencing pain. In contrast to subjects without LBP, subjects with LBP displayed activation of the cortical area related to pain and emotions: the insula, supplementary motor area, premotor area, thalamus, pulvinar, posterior cingulate cortex, hippocampus, fusiform, gyrus, and cerebellum. These results suggest that the virtual LBP stimuli caused memory retrieval of unpleasant experiences and therefore may be associated with prolonged chronic LBP conditions

    bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    Get PDF
    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration

    ヒト腱・靭帯のプロテオーム解析 : 結合組織における不溶性細胞外マトリックスの可溶化と解析

    Get PDF
    Connective tissues such as tendon, ligament and cartilage are mostly composed of extracellular matrix (ECM). These tissues are insoluble, mainly due to the highly cross-linked ECM proteins such as collagens. Difficulties obtaining suitable samples for mass spectrometric analysis render the application of modern proteomic technologies difficult. Complete solubilization of them would not only elucidate protein composition of normal tissues but also reveal pathophysiology of pathological tissues. Here we report complete solubilization of human Achilles tendon and yellow ligament, which is achieved by chemical digestion combined with successive protease treatment including elastase. The digestion mixture was subjected to liquid chromatography-mass spectrometry. The low specificity of elastase was overcome by accurate mass analysis achieved using FT-ICR-MS. In addition to the detailed proteome of both tissues, we also quantitatively determine the major protein composition of samples, by measuring peak area of some characteristic peptides detected in tissue samples and in purified proteins. As a result, differences between human Achilles tendon and yellow ligament were elucidated at molecular level

    Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts

    Get PDF
    BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress
    corecore