9,038 research outputs found
Flux enhancement in the inner region of a geometrically and optically thick accretion disk
The surface flux (and the corresponding observed flux) of a geometrically
thick ``funnel'' shaped disk is computed taking into account the radiation
impinging on the surface from other parts of the disk. It is found that the
ratio of the maximum apparent luminosity to the real luminosity of the disk is
only a factor even when the opening angle of the disk is small
(). Thus, geometrically beamed emission from ``funnel'' shaped
sub-Eddington disks around stellar mass black holes, cannot explain the
Ultra-Luminous X-ray sources detected in nearby galaxies.Comment: accepted for publication in Ap
Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)(2) systems at high pressure of 9-10 GPa region
Cubic diamond was synthesized with two systems, (1) graphite with pure magnesium carbonate (magnesite) and (2) graphite with mixed potassium and magnesium carbonate at pressures and temperatures above 9.5 GPa, 1600 degrees C and 9 GPa, 1650 degrees C, respectively. At these conditions (1) the pure magnesite is solid, whereas (2) the mixed carbonate exists as a melt. In this pressure range, graphite seems to be partially transformed into hexagonal diamond. Measured carbon isotope delta(13)C values for all the materials suggest that the origin of the carbon source to form cubic diamond was the initial graphite powder, and not the carbonates
Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state
We report results of a numerical-relativity simulation for the merger of a
black hole-neutron star binary with a variety of equations of state (EOSs)
modeled by piecewise polytropes. We focus in particular on the dependence of
the gravitational waveform at the merger stage on the EOSs. The initial
conditions are computed in the moving-puncture framework, assuming that the
black hole is nonspinning and the neutron star has an irrotational velocity
field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and
MNS are the masses of the black hole and neutron star, respectively), the
neutron star is tidally disrupted before it is swallowed by the black hole
irrespective of the EOS. Especially for less-compact neutron stars, the tidal
disruption occurs at a more distant orbit. The tidal disruption is reflected in
a cutoff frequency of the gravitational-wave spectrum, above which the spectrum
amplitude exponentially decreases. A clear relation is found between the cutoff
frequency of the gravitational-wave spectrum and the compactness of the neutron
star. This relation also depends weakly on the stiffness of the EOS in the core
region of the neutron star, suggesting that not only the compactness but also
the EOS at high density is reflected in gravitational waveforms. The mass of
the disk formed after the merger shows a similar correlation with the EOS,
whereas the spin of the remnant black hole depends primarily on the mass ratio
of the binary, and only weakly on the EOS. Properties of the remnant disks are
also analyzed.Comment: 27pages, 21 figures; erratum is added on Aug 5. 201
New Near-Infrared Spectroscopy of the High Redshift Quasar B 1422+231 at z=3.62
We present new near-infrared (rest-frame UV-to-optical) spectra of the high
redshift, gravitationally lensed quasar B 1422+231 (z=3.62). Diagnostic
emission lines of FeII, [OIII]5007, and Hb, commonly used to determine the
excitation, ionization, and chemical abundances of radio-quiet and radio-loud
quasars, were detected. Our new data show that the ratio FeII(UV)/Hb=18.1+-4.6
and FeII(optical)/Hb=2.3+-0.6 are higher than those reported by Kawara et al.
(1996) by factors of 1.6 and 3.3, respectively, although the ration
[OIII]5007/Hb=0.19+-0.02 is nearly the same between the two measurements. The
discrepancy of the line flux ratios between the measurements is likely due to
improved data and fitting procedures rather that to intrinsic variability.
While approximately half of the high-z quasars observed to date have much more
extreme FeII(optical)/Hb ratios, the line ratio measured for B 422+231 are
consistent with the observed range of FeII(optical) ratios of low-z quasars.Comment: 5 pages, 1 table, 4 figures. To appear in The Astronomical Journa
Exploring binary-neutron-star-merger scenario of short-gamma-ray bursts by gravitational-wave observation
We elucidate the feature of gravitational waves (GWs) from binary neutron
star merger collapsing to a black hole by general relativistic simulation. We
show that GW spectrum imprints the coalescence dynamics, formation process of
disk, equation of state for neutron stars, total masses, and mass ratio. A
formation mechanism of the central engine of short -ray bursts, which
are likely to be composed of a black hole and surrounding disk, therefore could
be constrained by GW observation.Comment: Accepted to PR
- …