557 research outputs found

    Room temperature Peierls distortion in small radius nanotubes

    Get PDF
    By means of {\it ab initio} simulations, we investigate the phonon band structure and electron-phonon coupling in small 4-\AA diameter nanotubes. We show that both the C(5,0) and C(3,3) tubes undergo above room temperature a Peierls transition mediated by an acoustical long-wavelength and an optical q=2kFq=2k_F phonons respectively. In the armchair geometry, we verify that the electron-phonon coupling parameter λ\lambda originates mainly from phonons at q=2kFq=2k_F and is strongly enhanced when the diameter decreases. These results question the origin of superconductivity in small diameter nanotubes.Comment: submitted 21oct2004 accepted 6jan2005 (Phys.Rev.Lett.

    Magnetic moment of the 2083 keV level of [140]Ce

    Get PDF
    For the magnetic moment of the 2083 keV level of [140]Ce, there are four published data, all obtained by applying an external magnetic field of less than 5 T to a liquid sample containing [140]La using the time-differential perturbed angular correlation (TDPAC) technique. Although these four values are consistent within two times their uncertainties (2σ), the range of values in 2σ extends from μ=+3.0to +5.2 (in units of nuclear magneton, μ[N]). This time, the TDPAC technique was successfully applied to the 2083 keV level of 140Ce implanted in an Fe foil. The magnetic moment of this level was determined to be μ=+4.00(20)μ[N], employing the known hyperfine field at 141Ce in Fe, −41(2) T, which agrees very well with one of the values, μ=+4.06(15)μ[N]. The present value is compared with two shell-model calculations

    Single domain transport measurements of C60 films

    Full text link
    Thin films of potassium doped C60, an organic semiconductor, have been grown on silicon. The films were grown in ultra-high vacuum by thermal evaporation of C60 onto oxide-terminated silicon as well as reconstructed Si(111). The substrate termination had a drastic influence on the C60 growth mode which is directly reflected in the electrical properties of the films. Measured on the single domain length scale, these films revealed resistivities comparable to bulk single crystals. In situ electrical transport properties were correlated to the morphology of the film determined by scanning tunneling microscopy. The observed excess conductivity above the superconducting transition can be attributed to two-dimensional fluctuations.Comment: 4 pages, 4 figure

    Nature of bonding and electronic structure in MgB2, a boron intercalation superconductor

    Full text link
    Chemical bonding and electronic structure of MgB2, a boron-based newly discovered superconductor, is studied using self-consistent band structure techniques. Analysis of the transformation of the band structure for the hypothetical series of graphite - primitive graphite - primitive graphite-like boron - intercalated boron, shows that the band structure of MgB2 is graphite-like, with pi-bands falling deeper than in ordinary graphite. These bands possess a typically delocalized and metallic, as opposed to covalent, character. The in-plane sigma-bands retain their 2D covalent character, but exhibit a metallic hole-type conductivity. The coexistence of 2D covalent in-plane and 3D metallic-type interlayer conducting bands is a peculiar feature of MgB2. We analyze the 2D and 3D features of the band structure of MgB2 and related compounds, and their contributions to conductivity.Comment: 4 pages in revtex, 3 figures in 4 separate EPS file

    Lattice distortion and energy level structures in doped C_{60} and C_{70} studied with the extended Su-Schrieffer-Heeger model: Polaron excitations and optical absorption

    Full text link
    We extend the Su-Schrieffer-Heeger model of polyacetylene to C_{60} and C_{70} molecules, and solve numerically. The calculations of the undoped systems agree well with the known results. When the system (C_{60} or C_{70}) is doped with one or two electrons (or holes), the additional charges accumulate almost along an equatorial line of the molecule. The dimerization becomes weaker almost along the same line. Two energy levels intrude largely in the gap. The intrusion is larger in C_{70} than in C_{60}. Therefore, ``polarons'' are predicted in doped buckminster- fullerenes. We calculate optical absorption coefficient for C_{60} in order to look at how ``polarons'' will be observed. It is predicted that there appears a new peak at the lower energy than the intergap transition peaks. It is also found that C_{60} and C_{70} are related mutually with respect to electronical structures as well as lattice geometries. (to be published in Phys. Rev. B 45, June 15 issue)Comment: 21 page

    Nonadiabatic Pauli susceptibility in fullerene compounds

    Full text link
    Pauli paramagnetic susceptibility χ\chi is unaffected by the electron-phonon interaction in the Migdal-Eliashberg context. Fullerene compounds however do not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic effects are expected to be relevant in these materials. In this paper we investigate the Pauli spin susceptibility in nonadiabatic regime by following a conserving approach based on Ward's identity. We find that a sizable renormalization of χ\chi due to electron-phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence of χ\chi on the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increasing, in agreement with the temperature dependence of χ\chi observed in fullerene compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include

    First-Principles Electronic Structure of Solid Picene

    Full text link
    To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures Tc=720T_c=7 - 20 K, we have obtained a first-principles electronic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K3_3picene) cases, where the bands are not rigid. The Fermi surface for K3_3picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.Comment: 5 pages, 4 figure

    Structural study on hole-doped superconductors Pr1-xSrxFeAsO

    Full text link
    The structural details in Pr1-xSrxFeAsO (1111) superconducting system are analyzed using data obtained from synchrotron X-ray diffraction and the structural parameters are carefully studied as the system is moving from non-superconducting to hole-doped superconducting with the Sr concentration. Superconductivity emerges when the Sr doping amount reaches 0.221. The linear increase of the lattice constants proves that Sr is successfully introduced into the system and its concentration can accurately be determined by the electron density analyses. The evolution of structural parameters with Sr concentration in Pr1-xSrxFeAsO and their comparison to other similar structural parameters of the related Fe-based superconductors suggest that the interlayer space between the conducting As-Fe-As layer and the insulating Pr-O-Pr layer is important for improving Tc in the hole-doped (1111) superconductors, which seems to be different from electron-doped systems.Comment: 17 pages, 7 figures, 1 tabl
    corecore