2 research outputs found

    Prime Focus Spectrograph - Subaru's future -

    Full text link
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru's wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a wide-field metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 {\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki Takami, Editors, Proc. SPIE 8446 (2012)

    Vestibular Schwannoma Volume and Tumor Growth Correlates with Macrophage Marker Expression

    No full text
    Vestibular schwannoma is the most common benign tumor of the cerebellopontine angle and originates from Schwann cells surrounding the vestibulocochlear nerve. Since the size of the VS varies widely, affected patients suffer from symptoms of varying severity. It is often difficult to determine the optimal time for therapy, due to the unpredictability of the growth rate. Despite many investigations on influencing factors, no mechanism responsible for the increase in the growth rate of certain VS has been identified so far. Therefore, the present study investigates the influence of the seven markers: Ki-67, cyclooxygenase 2 (COX2), vascular endothelial growth factor (VEGF), macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), CD163, and CD68 on tumor progression and tumor size in a cohort of 173 VS. The markers were determined by quantitative PCR and correlated with tumor volume and VS growth rate. The analysis showed a significantly negative correlation of the Ki-67, COX2, and VEGF on tumor volume. Moreover, with a higher volume of VS, the expression of the macrophage markers CD68, CD163, and GM-CSF increased significantly. Our results suggest that the increase in VS size is not primarily due to Schwann cell growth but to an infiltration of macrophages. This may have an impact on non-invasive therapy to preserve the hearing function of affected patients
    corecore