7 research outputs found

    Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease

    Get PDF
    The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease

    Whole Lung Irradiation in Adults with Metastatic Ewing Sarcoma: Practice Patterns and Implications for Treatment

    Get PDF
    Background. Whole lung irradiation (WLI) is a standard treatment component for children with metastatic Ewing Sarcoma (ES), but data on WLI for adults are sparse. Design. An email survey was sent to expert sarcoma-dedicated oncologists worldwide: An adult with excellent performance status presents with primary ES in the leg and multiple pulmonary metastases. The patient achieves complete radiographic response after chemotherapy and resection of the primary. Would you give bilateral WLI to (1) this adult patient?, (2) this patient if 20 years old (yo)?, (3) this patient if 45 yo?, or (4) this patient if 60 yo? Results. 38 experts responded, including 24 adult, 1 adolescent young adult, and 13 pediatric oncologists. 63%, 63%, 62%, and 50% of respondents offered WLI to the adult, 20-year-old, 45-year-old, and 60-year-old, respectively. Pediatric oncologists more likely endorsed WLI across all ages including the adult (P=0.01), 20-year-old (P=0.005), 45-year-old (P=0.01), and 60-year-old (P=0.08). There were no significant differences between medical and radiation oncologists or between European/Australian and American providers. Conclusions. Almost two-thirds of experts surveyed supported WLI for adults with metastatic ES up to age 45 and half supported WLI for a 60-year-old. Continued collaboration across adult and pediatric oncology is needed to define evidence-based strategies across the age spectrum

    Re-irradiation of recurrent IDH-wildtype glioblastoma in the bevacizumab and immunotherapy era: Target delineation, outcomes and patterns of recurrence

    Get PDF
    INTRODUCTION AND BACKGROUND While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. MATERIALS AND METHODS Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. RESULTS One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). CONCLUSION Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality

    Phase I study of a novel glioblastoma radiation therapy schedule exploiting cell-state plasticity

    No full text
    BACKGROUND: Glioblastomas comprise heterogeneous cell populations with dynamic, bidirectional plasticity between treatment-resistant stem-like and treatment-sensitive differentiated states, with treatment influencing this process. However, current treatment protocols do not account for this plasticity. Previously, we generated a mathematical model based on preclinical experiments to describe this process and optimize a radiation therapy fractionation schedule that substantially increased survival relative to standard fractionation in a murine glioblastoma model. METHODS: We developed statistical models to predict the survival benefit of interventions to glioblastoma patients based on the corresponding survival benefit in the mouse model used in our preclinical study. We applied our mathematical model of glioblastoma radiation response to optimize a radiation therapy fractionation schedule for patients undergoing re-irradiation for glioblastoma and developed a first-in-human trial (NCT03557372) to assess the feasibility and safety of administering our schedule. RESULTS: Our statistical modeling predicted that the hazard ratio, when comparing our novel radiation schedule with a standard schedule, would be 0.74. Our mathematical modeling suggested that a practical, near optimal schedule for re-irradiation of recurrent glioblastoma patients was 3.96 Gy x 7 (1 fraction/day) followed by 1.0 Gy x 9 (3 fractions/day). Our optimized schedule was successfully administered to 14/14 (100%) patients. CONCLUSIONS: A novel radiation therapy schedule based on mathematical modeling of cell-state plasticity is feasible and safe to administer to glioblastoma patients
    corecore