20 research outputs found
Conditional Density Estimation with Dimensionality Reduction via Squared-Loss Conditional Entropy Minimization
Regression aims at estimating the conditional mean of output given input.
However, regression is not informative enough if the conditional density is
multimodal, heteroscedastic, and asymmetric. In such a case, estimating the
conditional density itself is preferable, but conditional density estimation
(CDE) is challenging in high-dimensional space. A naive approach to coping with
high-dimensionality is to first perform dimensionality reduction (DR) and then
execute CDE. However, such a two-step process does not perform well in practice
because the error incurred in the first DR step can be magnified in the second
CDE step. In this paper, we propose a novel single-shot procedure that performs
CDE and DR simultaneously in an integrated way. Our key idea is to formulate DR
as the problem of minimizing a squared-loss variant of conditional entropy, and
this is solved via CDE. Thus, an additional CDE step is not needed after DR. We
demonstrate the usefulness of the proposed method through extensive experiments
on various datasets including humanoid robot transition and computer art
高次元データ解析のためのシングルステップ次元削減とその強化学習への応用
学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 五十嵐 健夫, 東京大学教授 井元 清哉, 東京大学教授 中川 裕志, 東京大学講師 中山 英樹, 沖縄科学技術大学院大学教授 銅谷 賢治University of Tokyo(東京大学