18,364 research outputs found

    On the Properties of Gromov Matrices and their Applications in Network Inference

    Full text link
    The spanning tree heuristic is a commonly adopted procedure in network inference and estimation. It allows one to generalize an inference method developed for trees, which is usually based on a statistically rigorous approach, to a heuristic procedure for general graphs by (usually randomly) choosing a spanning tree in the graph to apply the approach developed for trees. However, there are an intractable number of spanning trees in a dense graph. In this paper, we represent a weighted tree with a matrix, which we call a Gromov matrix. We propose a method that constructs a family of Gromov matrices using convex combinations, which can be used for inference and estimation instead of a randomly selected spanning tree. This procedure increases the size of the candidate set and hence enhances the performance of the classical spanning tree heuristic. On the other hand, our new scheme is based on simple algebraic constructions using matrices, and hence is still computationally tractable. We discuss some applications on network inference and estimation to demonstrate the usefulness of the proposed method

    Estimating Infection Sources in Networks Using Partial Timestamps

    Full text link
    We study the problem of identifying infection sources in a network based on the network topology, and a subset of infection timestamps. In the case of a single infection source in a tree network, we derive the maximum likelihood estimator of the source and the unknown diffusion parameters. We then introduce a new heuristic involving an optimization over a parametrized family of Gromov matrices to develop a single source estimation algorithm for general graphs. Compared with the breadth-first search tree heuristic commonly adopted in the literature, simulations demonstrate that our approach achieves better estimation accuracy than several other benchmark algorithms, even though these require more information like the diffusion parameters. We next develop a multiple sources estimation algorithm for general graphs, which first partitions the graph into source candidate clusters, and then applies our single source estimation algorithm to each cluster. We show that if the graph is a tree, then each source candidate cluster contains at least one source. Simulations using synthetic and real networks, and experiments using real-world data suggest that our proposed algorithms are able to estimate the true infection source(s) to within a small number of hops with a small portion of the infection timestamps being observed.Comment: 15 pages, 15 figures, accepted by IEEE Transactions on Information Forensics and Securit

    D2^2: Decentralized Training over Decentralized Data

    Full text link
    While training a machine learning model using multiple workers, each of which collects data from their own data sources, it would be most useful when the data collected from different workers can be {\em unique} and {\em different}. Ironically, recent analysis of decentralized parallel stochastic gradient descent (D-PSGD) relies on the assumption that the data hosted on different workers are {\em not too different}. In this paper, we ask the question: {\em Can we design a decentralized parallel stochastic gradient descent algorithm that is less sensitive to the data variance across workers?} In this paper, we present D2^2, a novel decentralized parallel stochastic gradient descent algorithm designed for large data variance \xr{among workers} (imprecisely, "decentralized" data). The core of D2^2 is a variance blackuction extension of the standard D-PSGD algorithm, which improves the convergence rate from O(σnT+(nζ2)13T2/3)O\left({\sigma \over \sqrt{nT}} + {(n\zeta^2)^{\frac{1}{3}} \over T^{2/3}}\right) to O(σnT)O\left({\sigma \over \sqrt{nT}}\right) where ζ2\zeta^{2} denotes the variance among data on different workers. As a result, D2^2 is robust to data variance among workers. We empirically evaluated D2^2 on image classification tasks where each worker has access to only the data of a limited set of labels, and find that D2^2 significantly outperforms D-PSGD
    • …
    corecore