130 research outputs found

    D2^2: Decentralized Training over Decentralized Data

    Full text link
    While training a machine learning model using multiple workers, each of which collects data from their own data sources, it would be most useful when the data collected from different workers can be {\em unique} and {\em different}. Ironically, recent analysis of decentralized parallel stochastic gradient descent (D-PSGD) relies on the assumption that the data hosted on different workers are {\em not too different}. In this paper, we ask the question: {\em Can we design a decentralized parallel stochastic gradient descent algorithm that is less sensitive to the data variance across workers?} In this paper, we present D2^2, a novel decentralized parallel stochastic gradient descent algorithm designed for large data variance \xr{among workers} (imprecisely, "decentralized" data). The core of D2^2 is a variance blackuction extension of the standard D-PSGD algorithm, which improves the convergence rate from O(σnT+(nζ2)13T2/3)O\left({\sigma \over \sqrt{nT}} + {(n\zeta^2)^{\frac{1}{3}} \over T^{2/3}}\right) to O(σnT)O\left({\sigma \over \sqrt{nT}}\right) where ζ2\zeta^{2} denotes the variance among data on different workers. As a result, D2^2 is robust to data variance among workers. We empirically evaluated D2^2 on image classification tasks where each worker has access to only the data of a limited set of labels, and find that D2^2 significantly outperforms D-PSGD

    A role for recurrent processing in object completion: neurophysiological, psychophysical and computational"evidence

    Get PDF
    Recognition of objects from partial information presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. We combined neurophysiological recordings in human cortex with psychophysical measurements and computational modeling to investigate the mechanisms involved in object completion. We recorded intracranial field potentials from 1,699 electrodes in 18 epilepsy patients to measure the timing and selectivity of responses along human visual cortex to whole and partial objects. Responses along the ventral visual stream remained selective despite showing only 9-25% of the object. However, these visually selective signals emerged ~100 ms later for partial versus whole objects. The processing delays were particularly pronounced in higher visual areas within the ventral stream, suggesting the involvement of additional recurrent processing. In separate psychophysics experiments, disrupting this recurrent computation with a backward mask at ~75ms significantly impaired recognition of partial, but not whole, objects. Additionally, computational modeling shows that the performance of a purely bottom-up architecture is impaired by heavy occlusion and that this effect can be partially rescued via the incorporation of top-down connections. These results provide spatiotemporal constraints on theories of object recognition that involve recurrent processing to recognize objects from partial information

    FedCut: A Spectral Analysis Framework for Reliable Detection of Byzantine Colluders

    Full text link
    This paper proposes a general spectral analysis framework that thwarts a security risk in federated Learning caused by groups of malicious Byzantine attackers or colluders, who conspire to upload vicious model updates to severely debase global model performances. The proposed framework delineates the strong consistency and temporal coherence between Byzantine colluders' model updates from a spectral analysis lens, and, formulates the detection of Byzantine misbehaviours as a community detection problem in weighted graphs. The modified normalized graph cut is then utilized to discern attackers from benign participants. Moreover, the Spectral heuristics is adopted to make the detection robust against various attacks. The proposed Byzantine colluder resilient method, i.e., FedCut, is guaranteed to converge with bounded errors. Extensive experimental results under a variety of settings justify the superiority of FedCut, which demonstrates extremely robust model performance (MP) under various attacks. It was shown that FedCut's averaged MP is 2.1% to 16.5% better than that of the state of the art Byzantine-resilient methods. In terms of the worst-case model performance (MP), FedCut is 17.6% to 69.5% better than these methods

    Distributed Learning over Unreliable Networks

    Full text link
    Most of today's distributed machine learning systems assume {\em reliable networks}: whenever two machines exchange information (e.g., gradients or models), the network should guarantee the delivery of the message. At the same time, recent work exhibits the impressive tolerance of machine learning algorithms to errors or noise arising from relaxed communication or synchronization. In this paper, we connect these two trends, and consider the following question: {\em Can we design machine learning systems that are tolerant to network unreliability during training?} With this motivation, we focus on a theoretical problem of independent interest---given a standard distributed parameter server architecture, if every communication between the worker and the server has a non-zero probability pp of being dropped, does there exist an algorithm that still converges, and at what speed? The technical contribution of this paper is a novel theoretical analysis proving that distributed learning over unreliable network can achieve comparable convergence rate to centralized or distributed learning over reliable networks. Further, we prove that the influence of the packet drop rate diminishes with the growth of the number of \textcolor{black}{parameter servers}. We map this theoretical result onto a real-world scenario, training deep neural networks over an unreliable network layer, and conduct network simulation to validate the system improvement by allowing the networks to be unreliable

    SpaceNet MVOI: a Multi-View Overhead Imagery Dataset

    Full text link
    Detection and segmentation of objects in overheard imagery is a challenging task. The variable density, random orientation, small size, and instance-to-instance heterogeneity of objects in overhead imagery calls for approaches distinct from existing models designed for natural scene datasets. Though new overhead imagery datasets are being developed, they almost universally comprise a single view taken from directly overhead ("at nadir"), failing to address a critical variable: look angle. By contrast, views vary in real-world overhead imagery, particularly in dynamic scenarios such as natural disasters where first looks are often over 40 degrees off-nadir. This represents an important challenge to computer vision methods, as changing view angle adds distortions, alters resolution, and changes lighting. At present, the impact of these perturbations for algorithmic detection and segmentation of objects is untested. To address this problem, we present an open source Multi-View Overhead Imagery dataset, termed SpaceNet MVOI, with 27 unique looks from a broad range of viewing angles (-32.5 degrees to 54.0 degrees). Each of these images cover the same 665 square km geographic extent and are annotated with 126,747 building footprint labels, enabling direct assessment of the impact of viewpoint perturbation on model performance. We benchmark multiple leading segmentation and object detection models on: (1) building detection, (2) generalization to unseen viewing angles and resolutions, and (3) sensitivity of building footprint extraction to changes in resolution. We find that state of the art segmentation and object detection models struggle to identify buildings in off-nadir imagery and generalize poorly to unseen views, presenting an important benchmark to explore the broadly relevant challenge of detecting small, heterogeneous target objects in visually dynamic contexts.Comment: Accepted into IEEE International Conference on Computer Vision (ICCV) 201
    • …
    corecore