6,895 research outputs found

    Effects of annealing temperature on sensing properties of Pt/HfO2/SiC Schottky-diode hydrogen sensor

    Get PDF
    Hafnium oxide (HfO 2) is successfully used as gate insulator for fabricating Metal-Insulator-SiC (MISiC) Schottky-diode hydrogen sensor. Sensors undergone N 2 annealing at different temperatures are fabricated for investigation. The hydrogen-sensing properties of these samples are compared with each other by taking the measurements at high temperature under various hydrogen concentrations using a computer-controlled measurement system. Experimental results show that sensitivity increases with the annealing temperature. Higher annealing temperature can enhance the densification of the HfO 2 film; improve the oxide stoichiometry; and facilitate the growth of a SiO 2 interfacial layer to give better interface quality, thus causing a remarkable reduction of the current of the sensor under air ambient. The effects of hydrogen adsorption on the barrier height and hydrogen-reaction kinetics are also investigated. © 2008 IEEE.published_or_final_versio

    Enhanced sensing performance of MISiC schottky-diode hydrogen sensor by using HfON as gate insulator

    Get PDF
    MISiC Schottky-diode hydrogen sensor with HfON gate insulator fabricated by NO nitridation is investigated. The hydrogen-sensing characteristics of this novel sensor are studied by doing steady-state and transient measurements at different temperatures and hydrogen concentrations using a computer-controlled measurement system. Experimental results show that this novel sensor can rapidly respond to hydrogen variation and can give a significant response even at a low H 2 concentration of 48-ppm, e.g., a sensitivity of 81% is achieved at 450°C and 2.5 V, which is two times higher than its HfO 2 counterpart. The enhanced sensitivity of the device should be attributed to a remarkable reduction of the current of the sensor before hydrogen exposure by the NO nitridation because the NO nitridation can passivate the O vacancies in the insulator and facilitate the formation of a SiO 2 interlayer to suppress the leakage current associated with high-k materials. © 2006 IEEE.published_or_final_versio

    Improved Sensing Characteristics of a Novel Pt/HfTiO2/SiC Schottky-Diode Hydrogen Sensor

    Get PDF
    published_or_final_versio

    PCV74 INCREMENTAL COSTS OF HYPERTENSION, HYPERGLYCEMIA, HYPERLIPIDEMIA, AND THEIR COMBINATIONS

    Get PDF

    A comparison of MISiC Schottky-diode hydrogen sensors made by NO, N 2O, or NH 3 nitridations

    Get PDF
    MISiC Schottky-diode hydrogen sensors with gate insulator grown in three different nitridation gases (nitric oxide (NO), N 2O, and NH 3) are fabricated. Steady-state and transien-t-response measurements are carried out at different temperatures and hydrogen concentrations using a computer-controlled measurement system. Experimental results show that these nitrided sensors have high sensitivity and can give a rapid and stable response over a wide range of temperature. This paper also finds that N 2O provides the fastest insulator growth with good insulator quality and hence the highest sensitivity among the three nitrided samples. The N 2O- nitrided sensor can give a significant response even at a low H 2 concentration of 48-ppm H 2 in N 2, indicating a potential application for detecting hydrogen leakage at high temperature. Moreover, the three nitrided samples respond faster than the control sample. At 300°C, the response times of the N 2O, NO, and NH 3-nitrided sample to the 48-ppm H 2 in N 2 are 11, 11, and 37 s, respectively, as compared to 65 s for the control sample without the gate insulator. © 2006 IEEE.published_or_final_versio

    Measurement of flow volume in the presence of reverse flow with ultrasound speckle decorrelation

    Get PDF
    Direct measurement of volumetric flow rate in the cardiovascular system with ultrasound is valuable but has been a challenge because most current 2-D flow imaging techniques are only able to estimate the flow velocity in the scanning plane (in-plane). Our recent study demonstrated that high frame rate contrast ultrasound and speckle decorrelation (SDC) can be used to accurately measure the speed of flow going through the scanning plane (through-plane). The volumetric flow could then be calculated by integrating over the luminal area, when the blood vessel was scanned from the transverse view. However, a key disadvantage of this SDC method is that it cannot distinguish the direction of the through-plane flow, which limited its applications to blood vessels with unidirectional flow. Physiologic flow in the cardiovascular system could be bidirectional due to its pulsatility, geometric features, or under pathologic situations. In this study, we proposed a method to distinguish the through-plane flow direction by inspecting the flow within the scanning plane from a tilted transverse view. This method was tested on computer simulations and experimental flow phantoms. It was found that the proposed method could detect flow direction and improved the estimation of the flow volume, reducing the overestimation from over 100% to less than 15% when there was flow reversal. This method showed significant improvement over the current SDC method in volume flow estimation and can be applied to a wider range of clinical applications where bidirectional flow exists

    Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Get PDF
    Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC) and H<sup>+</sup> concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO<sub>3</sub><sup>−</sup>-N loss (or 26% of total N loss), and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO<sub>3</sub><sup>−</sup>-N loss (or 28% of total N loss). The results suggest that subsurface lateral flow through hydraulically stratified soil pedons have to be paid more attention for controlling non-point source surface water pollution from intensive agricultural catchment particularly in the subtropical areas with great soil infiltration

    Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field

    Full text link
    We calculate the electronic states of Alx_xGa1x_{1-x}As/GaAs/Alx_xGa1x_{1-x}As double heterojunctions subjected to a magnetic field parallel to the quasi two-dimensional electron gas. We study the energy dispersion curves, the density of states, the electron concentration and the distribution of the electrons in the subbands. The parallel magnetic field induces severe changes in the density of states, which are of crucial importance for the explanation of the magnetoconductivity in these structures. However, to our knowledge, there is no systematic study of the density of states under these circumstances. We attempt a contribution in this direction. For symmetric heterostructures, the depopulation of the higher subbands, the transition from a single to a bilayer electron system and the domination of the bulk Landau levels in the centre the wide quantum well, as the magnetic field is continuously increased, are presented in the ``energy dispersion picture'' as well as in the ``electron concentration picture'' and in the ``density of states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures (three) embedde

    High-Performance Pentacene Thin-Film Transistor With High-κ HfLaON as Gate Dielectric

    Get PDF
    published_or_final_versio

    High-mobility pentacene OTFT with TaLaO gate dielectric passivated by fluorine plasma

    Get PDF
    Pentacene thin-film transistor with high-κ TaLaO as gate dielectric has been fabricated and shows a carrier mobility of 0.73 cm2/V s, much higher than that based on pure La2O3 (0.43 cm2/V s) due to the smoother surface of the TaLaO film and thus larger pentacene islands grown on it in the initial stage. Moreover, among various times for fluorine-plasma treatment on the TaLaO gate dielectric, 100 seconds result in the highest carrier mobility of 1.12 cm2/V s due to (1) smoothest oxide surface achieved by fluorine passivation of oxide traps, as measured by AFM and supported by smallest sub-threshold swing and lowest low-frequency noise; (2) the largest pentacene grains grown on the smoothest oxide surface, as demonstrated by AFM. Pentacene islands on on TaLaO or La2O3 gate dielectric with different plasma treatment times.postprin
    corecore