62 research outputs found

    The effect of PID control scheme on the course-keeping of ship in oblique stern waves

    Get PDF
    Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship\u27s heading and wave parameters

    Sp1 Is Essential for p16(INK4a) Expression in Human Diploid Fibroblasts during Senescence

    Get PDF
    BACKGROUND: p16 (INK4a) tumor suppressor protein has been widely proposed to mediate entrance of the cells into the senescent stage. Promoter of p16 (INK4a) gene contains at least five putative GC boxes, named GC-I to V, respectively. Our previous data showed that a potential Sp1 binding site, within the promoter region from −466 to −451, acts as a positive transcription regulatory element. These results led us to examine how Sp1 and/or Sp3 act on these GC boxes during aging in cultured human diploid fibroblasts. METHODOLOGY/PRINCIPAL FINDINGS: Mutagenesis studies revealed that GC-I, II and IV, especially GC-II, are essential for p16 (INK4a) gene expression in senescent cells. Electrophoretic mobility shift assays (EMSA) and ChIP assays demonstrated that both Sp1 and Sp3 bind to these elements and the binding activity is enhanced in senescent cells. Ectopic overexpression of Sp1, but not Sp3, induced the transcription of p16 (INK4a). Both Sp1 RNAi and Mithramycin, a DNA intercalating agent that interferes with Sp1 and Sp3 binding activities, reduced p16 (INK4a) gene expression. In addition, the enhanced binding of Sp1 to p16 (INK4a) promoter during cellular senescence appeared to be the result of increased Sp1 binding affinity, not an alteration in Sp1 protein level. CONCLUSIONS/SIGNIFICANCE: All these results suggest that GC- II is the key site for Sp1 binding and increase of Sp1 binding activity rather than protein levels contributes to the induction of p16 (INK4a) expression during cell aging

    Guidelines for burn rehabilitation in China

    Get PDF
    Abstract Quality of life and functional recovery after burn injury is the final goal of burn care, especially as most of burn patients survive the injury due to advanced medical science. However, dysfunction, disfigurement, contractures, psychological problems and other discomforts due to burns and the consequent scars are common, and physical therapy and occupational therapy provide alternative treatments for these problems of burn patients. This guideline, organized by the Chinese Burn Association and Chinese Association of Burn Surgeons aims to emphasize the importance of team work in burn care and provide a brief introduction of the outlines of physical and occupational therapies during burn treatment, which is suitable for the current medical circumstances of China. It can be used as the start of the tools for burn rehabilitation.</jats:p

    Model Predictive Stator Flux Control of Permanent Magnet Synchronous Motor Based on Vector Duty Ratio Modulation

    No full text
    To address the issues of extensive computation and laborious weight coefficient selection in model predictive torque control (MPTC) for permanent magnet synchronous motors (PMSM), an optimized model predictive flux control (MPFC) is proposed based on three-phase voltage vector duty ratio modulation. First, we established a prediction model of PMSM based on stator flux linkage, constructed a prediction error cost function of stator flux linkage without weight coefficient. Meanwhile, the duty ratio of neighboring voltage vectors in each sector and the stator flux reference value were computed using the stator flux deadbeat control concept, and the stator flux reference value is computed. Finally, we proposed an optimal stator flux predictive control method based on three-phase voltage vector duty ratio modulation. Its effectiveness and reliability were verified by simulation and experiment. This method had excellent steady-state performance in the voltage vector output range, requires fewer predictions than the classic model predictive torque control method, and greatly reduces both the stator flux and the electromagnetic torque ripple

    Adaptive Control System Design and Experiment Study of Gas Flow Regulation System for Variable Flow Ducted Rockets

    No full text
    Variable flow ducted rockets (VFDRs) are promising candidates for propulsion systems in hypersonic vehicles because of their inherent advantages, such as high specific impulse, low weight, and high speed. The control of gas flow is essential for optimal VFDRs performance. However, the characteristics of gas flow regulation systems, such as anti-regulation, non-linearity, and parameter variation, make it difficult to construct gas flow controllers. Aiming at the above problems, we propose a compound control strategy integrating a novel second-order fuzzy adaptive tracking differentiator (SOA-TD) and an intelligent proportional-integral controller based on adaptive neuro-fuzzy inference system (ANFIS). First, a mathematical model of a gas flow regulation system was developed to analyze the control characteristics of VFDRs. Next, an ANFIS-based proportional-integral controller to developed to respond to the system’s time-varying characteristics. In addition, a novel SOA-TD was constructed to optimize the “arrange transient process” of instructions, which effectively suppressed anti-regulation of the gas flow without increasing response time. Finally, a hardware in loop (HIL) simulation device for VFDRs was established, and serial HIL simulation tests were carried out to verify the validation of the controller. The HIL simulation results indicate that our strategy exhibited a superior performance compared to traditional controllers in terms of adaptability, ability to suppress anti-regulation, and robustness, which is hoped to fulfill VFDRs’ thrust control requirements for a wide range of altitudes and Mach numbers in future engineering applications

    Biomimetic Propulsion Based on Duck's Feet for Mobile Buoy

    No full text

    Hybrid mechanism and data driven approach for high-precision modeling of gas flow regulation systems of VFDR

    No full text
    Abstract The variable flow ducted rocket (VFDR) poses significant challenges for high-precision modeling due to its complex nonlinear dynamics, harsh operational conditions, and integration of multiple physical fields. To address this challenge, this paper introduces a hybrid mechanism and data-driven modeling approach. Initially, the parameter perturbation method was employed to elucidate the interdependencies between system parameters and the VFDR's dynamic and steady-state responses. Entropy weight method (EWM) and technique for order preference by similarity to ideal solution (TOPSIS) were utilized for ranking the compensation parameters of the dynamic-state and steady-state models of the VFDR. Additionally, the throat area of the regulation valve was chosen as a compensatory parameter for the steady-state model. A data-driven residual compensation model was developed using the nonlinear autoregressive neural networks with external inputs (NARX) algorithm to enhance the steady-state mechanistic VFDR model, addressing its time-varying and high uncertainty characteristics. To mitigate dynamic response errors in the mechanistic model, a compensation strategy integrating error and similarity evolution with extreme learning machine (ELM) was implemented to generate compensation value. Simulation and ground experiment results validate the efficacy of the proposed algorithm, the experimental results indicate that, after compensation using the proposed strategy, the maximum error in a single test is reduced by 24.19%, and the average error is decreased by 17.81%

    Adropin Alleviates Myocardial Fibrosis in Diabetic Cardiomyopathy Rats: A Preliminary Study

    No full text
    Aim: Adropin (ADR) is a novel regulatory polypeptide and has important effects on energy metabolism in the heart. However, it is still unclear whether ADR can relieve ventricular remodeling in DCM. Therefore, this study was conducted to assess the effect of ADR on myocardial fibrosis in DCM rats.Materials and Methods: Twenty Wistar rats were randomly assigned into four groups: healthy control group (CON), DCM model group (DCM), DCM model treated with ADR group (ADR) and DCM model treated with perindopril group (PER). Collagen volume fraction (CVF) and perivascular collagen area (PVCA) were calculated. Diastolic function was assessed by echocardiography. The mitochondrial membrane potential assay was conducted by Rhodamine 123 staining. The protein expression levels of Col I, Col III, Mitofusin-1, Mitofusin-2 and Drp1 were evaluated using western blot.Results: Compared to CON group, CVF, PVCA and the relative protein expression of Col I, Col III and Drp1 increased in DCM group. And the relative expression of Mitofusin-1 and Mitofusin-2 proteins decreased. During our investigations, CVF, PVCA and the relative protein expression of Col I, Col III and Drp1 decreased in ADR treated rats compared to DCM group. The diastolic function was elevated in ADR group. The fluorescence of Rhodamine 123 and the expression of Mitofusin-1 and Mitofusin-2 also increased in ADR group.Conclusion: Our study demonstrated that ADR could alleviate myocardial fibrosis and improve diastolic function in DCM rats. ADR may be a putative candidate for the treatment of DCM.</jats:p
    corecore