266 research outputs found
FISH karyotype of 85 common wheat cultivars/lines displayed by ND-FISH using oligonucleotide probes
Fluorescence in situ hybridization (FISH) can reveal minor structural differences of chromosomes. The karyotype of common wheat (Triticum aestivum L.) based on FISH pattern is seldom reported. In this study, non-denaturing FISH (ND-FISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and (AAG)6 as probes was used to investigate the chromosomal structure of 85 common wheat including 83 wheat-rye 1RS.1BL translocation cultivars/lines, a wheatrye 1RS.1AL translocation cultivar Amigo and Chinese Spring (CS). Two, three, two, three, six, three and four structural types respectively for 1A, 2A, 3A, 4A, 5A, 6A and 7A chromosomes were observed. Two, eight, two, two, four and six types of chromosome for 2B, 3B, 4B, 5B, 6B and 7B were respectively detected. The structure of 1B chromosomes in Amigo and CS is different. Five, two, two and two types of chromosomal structure respectively for 1D, 2D, 3D and 5D were distinguished. Polymorphisms of 1RS.1BL, 4D, 6D and 7D chromosomes were not detected. Chromosomes 1AI, 2AI, 3AI, 4AI, 5AIII, 6AI, 7AIII, 2BI, 3BV, 4BI, 5BII, 6BIII, 7BI, 1DIV, 2DI, 3DI and 5DII appeared in these 85 wheat cultivars/lines at high frequency. Each of the 85 wheat cultivars/lines has a unique karyotype. Amigo is a complex translocation cultivar. The FISH karyotype of wheat chromosomes built in this study provide a reference for the future analyzing wheat genetic stocks and help to learn structural variations of wheat chromosomes. In addition, the results in this study indicate that oligonucleotide probes and ND-FISH technology can be used to identify individual wheat cultivar
True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass
The mid-infrared (MIR) spans the 3-25 m wavelength range. Rare-earth-ion doped selenide-chalcogenide glasses are being developed for direct-emission MIR fibre lasers. The true Pr3+ absorption cross-section in the 3.5-6 ”m wavelength region of a Pr3+-doped (500 ppmw of Pr3+ i.e. 9.47 x 1019 Pr3+ ions cm-3) GeAsGaSe host-glass is presented, after numerically removing the underlying, extrinsic vibrational absorption due to [H-Se-] contamination of the host-glass
True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass
The mid-infrared (MIR) spans the 3-25 m wavelength range. Rare-earth-ion doped selenide-chalcogenide glasses are being developed for direct-emission MIR fibre lasers. The true Pr3+ absorption cross-section in the 3.5-6 ”m wavelength region of a Pr3+-doped (500 ppmw of Pr3+ i.e. 9.47 x 1019 Pr3+ ions cm-3) GeAsGaSe host-glass is presented, after numerically removing the underlying, extrinsic vibrational absorption due to [H-Se-] contamination of the host-glass
Characterising refractive index dispersion in chalcogenide glasses
Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonicsâ applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive index dispersion characteristics of these glasses. Knowledge of material dispersion is critical in delivering step-index fibres including with high numerical aperture for mid-infrared supercontinuum generation
Independent Eigenstates of Angular Momentum in a Quantum N-body System
The global rotational degrees of freedom in the Schr\"{o}dinger equation for
an -body system are completely separated from the internal ones. After
removing the motion of center of mass, we find a complete set of
independent base functions with the angular momentum . These are
homogeneous polynomials in the components of the coordinate vectors and the
solutions of the Laplace equation, where the Euler angles do not appear
explicitly. Any function with given angular momentum and given parity in the
system can be expanded with respect to the base functions, where the
coefficients are the functions of the internal variables. With the right choice
of the base functions and the internal variables, we explicitly establish the
equations for those functions. Only (3N-6) internal variables are involved both
in the functions and in the equations. The permutation symmetry of the wave
functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys.
Rev. A 64, 0421xx (Oct. 2001
(INVITED) Methods for determining the refractive indices and thermo-optic coefficients of chalcogenide glasses at MIR wavelengths
Chalcogenide glasses have attracted much attention for the realization of photonic components owing to their outstanding optical properties in the mid-infrared (MIR) region. However, relatively few refractive index dispersion data are presently available for these glasses at MIR wavelengths. This paper presents a mini review of methods we have both used and developed to determine the refractive indices and thermo-optic coefficients of chalcogenide glasses at MIR wavelengths, and is supported by new results. The mini review should be useful to both new and established researchers in the chalcogenide glass field and fields of MIR optics, fiber-optics and waveguides. Three groups of methods are distinguished: (1) spectroscopic ellipsometry, (2) prism-based methods, and (3) methods using Fourier transform infrared (FTIR) transmission data. The mini review is supported by a brief discussion of refractive index models
Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method
The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared (MIR) spectral region (our measurements are over the wavelength range from 2 to 25 ÎŒm), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As40Se60 (atomic %) and Ge16As24Se15.5Te44.5 (atomic %) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 ÎŒm by comparison with a benchmark refractive index value obtained from prism measurements on Ge16As24Se15.5Te44.5 material taken from the same batch
Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China
A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3â in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3â47.0 ÎŒg N mâ3) and dry plus wet/bulk deposition fluxes (2.9â83.3 kg N haâ1 yrâ1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N haâ1 yrâ1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
- âŠ