20,187 research outputs found

    Numerical Study on Shear Flow in Sliding Bearing with Partial Slip Surface

    Get PDF
    AbstractFor revealing the effects of slip on such characteristics as friction force and load-bearing capacity of sliding bearing, shear flows of a Newtonian fluid with a varying partial slip surface were computed using finite volume method. Calculation results showed that slip would decrease the friction force, which however was not affected by the location of slip region. The load-bearing capacity of sliding bearing closely depended on the location of slip region, especially the locations of the starting and end points of slip region. A well-designed partial slip surface can improve the load-bearing capacity, otherwise slip would cause lubrication failure

    The gradient allocation principle based on the higher moment risk measure

    Full text link
    According to the gradient allocation principle based on a positively homogeneous and subadditive risk measure, the capital allocated to a sub-portfolio is the Gâteaux derivative, assuming it exists, of the underlying risk measure at the overall portfolio in the direction of the sub-portfolio. We consider the capital allocation problem based on the higher moment risk measure, which, as a generalization of expected shortfall, involves a risk aversion parameter and a confidence level and is consistent with the stochastic dominance of corresponding orders. As the main contribution, we prove that the higher moment risk measure is Gâteaux differentiable and derive an explicit expression for the Gâteaux derivative, which is then interpreted as the capital allocated to a corresponding sub-portfolio. We further establish the almost sure convergence and a central limit theorem for the empirical estimate of the capital allocation, and address the robustness issue of this empirical estimate by computing the influence function of the capital allocation. We also explore the interplay of the risk aversion and the confidence level in the context of capital allocation. In addition, we conduct intensive numerical studies to examine the obtained results and apply this research to a hypothetical portfolio of four stocks based on real data

    Forchheimer flow to a well-considering time-dependent critical radius

    Get PDF
    Previous studies on the non-Darcian flow into a pumping well assumed that critical radius (RCD) was a constant or infinity, where RCD represents the location of the interface between the non-Darcian flow region and Darcian flow region. In this study, a two-region model considering time-dependent RCD was established, where the non-Darcian flow was described by the Forchheimer equation. A new iteration method was proposed to estimate RCD based on the finite-difference method. The results showed that RCD increased with time until reaching the quasi steady-state flow, and the asymptotic value of RCD only depended on the critical specific discharge beyond which flow became non-Darcian. A larger inertial force would reduce the change rate of RCD with time, and resulted in a smaller RCD at a specific time during the transient flow. The difference between the new solution and previous solutions were obvious in the early pumping stage. The new solution agreed very well with the solution of the previous two-region model with a constant RCD under quasi steady flow. It agreed with the solution of the fully Darcian flow model in the Darcian flow region

    Robust subspace clustering via joint weighted Schatten-p norm and Lq norm minimization

    Full text link
    Š 2017 SPIE. Low-rank representation (LRR) has been successfully applied to subspace clustering. However, the nuclear norm in the standard LRR is not optimal for approximating the rank function in many real-world applications. Meanwhile, the L21 norm in LRR also fails to characterize various noises properly. To address the above issues, we propose an improved LRR method, which achieves low rank property via the new formulation with weighted Schatten-p norm and Lq norm (WSPQ). Specifically, the nuclear norm is generalized to be the Schatten-p norm and different weights are assigned to the singular values, and thus it can approximate the rank function more accurately. In addition, Lq norm is further incorporated into WSPQ to model different noises and improve the robustness. An efficient algorithm based on the inexact augmented Lagrange multiplier method is designed for the formulated problem. Extensive experiments on face clustering and motion segmentation clearly demonstrate the superiority of the proposed WSPQ over several state-of-the-art methods

    A tongue-print image database for recognition

    Get PDF
    Author name used in this publication: David ZhangBiometrics Research Centre, Department of ComputingVersion of RecordPublishe
    • …
    corecore