70 research outputs found

    Key factors influencing the environmental performance of pyrolysis, gasification and incineration Waste-to-Energy technologies

    Get PDF
    International audienceWaste-to-Energy (WtE) has started playing an increasingly important role in the recovery of energy from municipal solid waste (MSW). A number of WtE technologies are being developed. However, selecting a more environmentally sustainable option is difficult due to data limitation and methodological inconsistencies. Using life cycle assessment (LCA) as a tool, this paper aims to identify key factors influencing the potential environmental impacts of four representative WtE technologies, namely the incineration (S1), pyrolysis (S2), gasification (S3), and gasification coupled with ash melting (S4). The systems are constructed using inventory data based on on-site operation of several industrial-scale reference plants. A comprehensive sensitivity analysis is conducted, assessing a range of critical input parameters, processes, operating conditions and modelling assumptions. The results demonstrate that all analysed WtE systems exhibit environmental benefits (i.e. negative environmental impacts) for most of the impacts, while S3 seems to be more optimal due to an intermediate syngas cleaning process, which results in both reduced emissions and increased energy recovery. Parameters driving the environmental impacts are energy recovery efficiency, feedstock variability, NOx and CO2 emissions at stack, and recycling of metals. Moreover, the overall ranking of different WtE systems is strongly dependent on operating conditions, such as effectiveness of the air pollution control process, utilization pathway of pyrolysis char, and to a lesser extent, bottom ash management (landfill or recycling). The LCA modelling conditions, such as substituted source of electricity, choice of functional unit and time frame are also shown to significantly affect the quantified environmental performance. Finally, the study highlights the directions, towards which, efforts should be focused throughout all stages of each WtE technology to obtain further improvements

    Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants

    Get PDF
    International audienceMunicipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management

    The Slope pipeline engineering of Tanzania Mnazi Bay Underwater landslides analysis and engineering prevention advice

    Get PDF

    Room-temperature ammonia sensor based on ZnO nanorods deposited on ST-cut quartz surface acoustic wave devices

    Get PDF
    Using a seed layer-free hydrothermal method, ZnO nanorods (NRs) were deposited on ST-cut quartz surface acoustic wave (SAW) devices of ammonia sensing at room-temperature. For a comparison, a ZnO film layer of 30 nm thick was also coated onto ST-cut quartz SAW device using a sol–gel and spin-coating technique. The ammonia sensing results showed that the sensitivity, repeatability and stability of the ZnO NRs coated SAW device were superior to those of the ZnO film coated SAW device due to the large surface-to-volume ratio of the ZnO NRs

    Surface acoustic wave ammonia sensor based on SiO2-SnO2 composite film operated at room temperature

    Get PDF
    Sensitive thin film layers of SnO2, SiO2 and SiO2-SnO2 were deposited on a SAW resonator using sol-gel method and spin coating techniques. Their ammonia-sensing performance operated at room temperature was characterized and their sensing mechanisms were comprehensively studied. When exposed to ammonia, the sensors made of SnO2 and SiO2-SnO2 films exhibit positive frequency shifts, whereas the SiO2 film sensors exhibit a negative frequency shift. The positive frequency shift is related to the dehydration and condensation of hydroxyl groups, which make the films stiffer and lighter. The negative frequency shift is mainly caused by the increase of mass loading due to the adsorption of ammonia. The gas sensor based on SiO2-SnO2 film shows a positive frequency shift of 631 Hz when it is exposed to ammonia with a low concentration of 3 ppm, and it also shows good repeatability and stability, as well as a good selectivity to ammonia compared with gases of C6H14, C2H5OH, C3H6O, CO, H2, NO2, and CH4
    • …
    corecore