132 research outputs found

    Severe Plastic Deformation under High Pressure: Upsizing Sample Dimensions

    Get PDF
    It is well known that severe plastic deformation (SPD) produces ultrafine-grained structures in bulk metallic materials. The SPD process becomes more versatile when it is performed under high pressure as high-pressure torsion (HPT) and high-pressure sliding (HPS). Not only the grain size is more refined but also the process is applicable to hard-to-deform materials such as intermetallics, semiconductors and ceramics, leading to enhancement of functional properties as well as structural properties. The major drawback is that the sample size is small so that the applicability is limited to a laboratory scale and it is an important subject to increase the sample dimensions. This paper presents an overview describing efforts devoted thus far to deal with this upscaling issue

    Towards automated evaluation of left atrial transit time

    Full text link

    Study on the radon adsorption capability of low-background activated carbon

    Full text link
    Radon is a significant background source in rare event detection experiments. Activated Carbon (AC) adsorption is widely used for effective radon removal. The selection of AC considers its adsorption capacity and radioactive background. In this study, using self-developed devices, we screened and identified a new kind of low-background AC from Qingdao Inaf Technology Company that has very high Radon adsorption capacity. By adjusting the average pore size to 2.3 nm, this AC demonstrates a radon adsorption capacity of 2.6 or 4.7 times higher than Saratech or Carboact activated carbon under the same conditions.Comment: 21pages, 7 figure

    Achieving Superconductivity with Higher Tc in Lightweight Al-Ti-Mg Alloys: Prediction using Machine Learning and Synthesis via High-Pressure Torsion Process

    Get PDF
    Aluminum (Al) and titanium (Ti) are superconducting materials but their superconducting transition temperatures (Tc) are quite low as 1.20 and 0.39 K, respectively, while magnesium (Mg) never exhibits superconductivity. In this study, we explored new superconductors with higher Tc in the Al–Mg–Ti ternary system, along with the prediction using machine learning. High-pressure torsion (HPT) is utilized to produce the superconducting states. While performing AC magnetization measurements, we found, for the first time, superconducting states with Tc=4.0 and 7.3 K for a composition of Al:Ti = 1:2. The magnetic anomalies appeared more sharply when the sample was processed by HPT at 573 K than at room temperature, and the anomalies exhibited DC magnetic field dependence characteristic of superconductivity. Magnetic anomalies also appeared at ∼55 and ∼93 K, being supported by the prediction using the machine learning for the Al–Ti–O system, and this suggests that Al–Ti oxides play an important role in the advent of such anomalies but that the addition of Mg could be less effective

    Experimental Determination of Effective Minority Carrier Lifetime in HgCdTe Photovoltaic Detectors Using Optical and Electrical Methods

    Get PDF
    This paper presents experiment measurements of minority carrier lifetime using three different methods including modified open-circuit voltage decay (PIOCVD) method, small parallel resistance (SPR) method, and pulse recovery technique (PRT) on pn junction photodiode of the HgCdTe photodetector array. The measurements are done at the temperature of operation near 77 K. A saturation constant background light and a small resistance paralleled with the photodiode are used to minimize the influence of the effect of junction capacitance and resistance on the minority carrier lifetime extraction in the PIOCVD and SPR measurements, respectively. The minority carrier lifetime obtained using the two methods is distributed from 18 to 407 ns and from 0.7 to 110 ns for the different Cd compositions. The minority carrier lifetime extracted from the traditional PRT measurement is found in the range of 4 to 20 ns for x=0.231–0.4186. From the results, it can be concluded that the minority carrier lifetime becomes longer with the increase of Cd composition and the pixels dimensional area

    In Situ Synchrotron X-ray Analysis: Application of High-Pressure Sliding Process to Ti Allotropic Transformation

    Get PDF
    In this study, severe plastic deformation through high-pressure sliding (HPS) was applied for in situ high-energy X-ray diffraction analysis at SPring-8 in JASRI (Japan Synchrotron Radiation Research Institute). Allotropic transformation of pure Ti was examined in terms of temperatures, pressures and imposed strain using a miniaturized HPS facility. The true pressure applied on the sample was estimated from the peak shift. Peak broadening due to local variation of pressure was reduced using white X-rays. The phase transformation from α phase to ω phase occurred at a pressure of ∼4.5 GPa. Straining by the HPS processing was effective to promote the transformation to the ω phase and to maintain the ω phase even at ambient pressure. The reverse transformation from ω phase to α phase occurred at a temperature of ∼110°C under ambient pressure, while under higher pressure as ∼4 GPa, the ω phase remained stable even at ∼170°C covered in this study. It was suggested that the reverse transformation from the ω phase to the α phase is controlled by thermal energy

    VEGI174 protein and its functional domain peptides exert antitumour effects on renal cell carcinoma

    Get PDF
    Vascular endothelial growth inhibitor (VEGI) has been identified as an anti‑angiogenic cytokine. However, the effects of VEGI174 protein, and its functional domain peptides V7 and V8, on renal cell carcinoma (RCC) remain unknown. In the present study, the protein and peptides were biosynthesised as experimental agents. The A498 and 786‑O RCC cell lines, and an established mouse xenograft model, were separately treated with VEGI174, V7 or V8. Cellular functions, including proliferation, migration and invasion, were subsequently detected. Cell migration and invasion were monitored using the xCELLigence system. Furthermore, tumour growth and mouse behaviours, including mobility, appetite and body weight, were assessed. The results demonstrated that VEGI174, V7 and V8 inhibited the proliferation, migration and invasion of A498 and 786‑O cell lines when administered at concentrations of 1 and 100 pM, 10 nM and 1 µM. The inhibitory effects exhibited dose‑ and time‑dependent antitumour activity. Furthermore, VEGI174, V7 and V8 inhibited tumour growth in A498 and 786‑O xenograft mice. In the A498 xenografts, the tumour growth inhibition (TGI) rates in the VEGI174‑, V7‑ and V8‑treated groups were 71, 20 and 31%, respectively. In the 786‑O xenografts, the TGI rates in the VEGI174‑, V7‑ and V8‑treated groups were 34, 26 and 31%, respectively. There was no significant loss in body weight and no cases of mortality were observed for all treated mice. In conclusion, VEGI174, V7 and V8 exhibited potential antitumour effects and were well tolerated in vivo. V7 and V8, as functional domain peptides of the VEGI174 protein, may be studied for the future treatment of RCC

    The Effect of Predeformation on Creep Strength of 9% Cr Steel

    Get PDF
    Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1–30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and grain coarsening during creep
    corecore