2,239 research outputs found

    Solution to Degree Diameter-2 Graph Problem in Parallel Machine Tools Control Network Based on Genetic Algorithm

    Get PDF
    Parallel Machine Tools (PMT) is a mechanical and electrical integration product with good technique additional value, the control network of which is usually represented with graphs as parallel network or local network. Address to degree diameter problem in PMT control network graph, the paper used genetic algorithm (GA) to solve graph with maximum node number in different degree and diameter 2. Three evaluation functions as tree structure, recursive five loop and greedy five loop were designed and used for solving corresponding degree diameter-2 problem with genetic evolutionary. Experimental results show that evaluation function with tree structure has low time complexity and good adaptability, which has a certain reference for design and analysis on parallel computing environment constituted by multiple PMTs

    Differential measurement of atmospheric refraction with a telescope with double fields of view

    Full text link
    For the sake of complete theoretical research of atmospheric refraction, the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. In some engineering applications, the objects with larger zenith distance must be observed sometimes. Carrying out observational research of the atmospheric refraction at lower angles of elevation has an important significance. It has been considered difficult to measure the atmospheric refraction at lower angles of elevation. A new idea for determining atmospheric refraction by utilizing differential measurement with double fields of view is proposed. Taking the observational principle of HIPPARCOS satellite as a reference, a schematic prototype with double fields of view was developed. In August of 2013, experimental observations were carried out and the atmospheric refractions at lower angles of elevation can be obtained by the schematic prototype. The measured value of the atmospheric refraction at the zenith distance of 78.8 degree is 240.23"±0.27"240.23"\pm0.27", and the feasibility of differential measurement of atmospheric refraction with double fields of view was justified. The limitations of the schematic prototype such as inadequate ability of gathering light, lack of accurate meteorological data recording and lower automatic level of observation and data processing were also pointed out, which need to be improved in subsequent work.Comment: 10 pages, 6 figure

    Medium effects on the selection of sequences folding into stable proteins in a simple model

    Full text link
    We study the medium effects on the selection of sequences in protein folding by taking account of the surface potential in HP-model. Our analysis on the proportion of H and P monomers in the sequences gives a direct interpretation that the lowly designable structures possess small average gap. The numerical calculation by means of our model exhibits that the surface potential enhances the average gap of highly designable structures. It also shows that a most stable structure may be no longer the most stable one if the medium parameters changed.Comment: 4 pages, 4 figure

    Key factors influencing the environmental performance of pyrolysis, gasification and incineration Waste-to-Energy technologies

    Get PDF
    International audienceWaste-to-Energy (WtE) has started playing an increasingly important role in the recovery of energy from municipal solid waste (MSW). A number of WtE technologies are being developed. However, selecting a more environmentally sustainable option is difficult due to data limitation and methodological inconsistencies. Using life cycle assessment (LCA) as a tool, this paper aims to identify key factors influencing the potential environmental impacts of four representative WtE technologies, namely the incineration (S1), pyrolysis (S2), gasification (S3), and gasification coupled with ash melting (S4). The systems are constructed using inventory data based on on-site operation of several industrial-scale reference plants. A comprehensive sensitivity analysis is conducted, assessing a range of critical input parameters, processes, operating conditions and modelling assumptions. The results demonstrate that all analysed WtE systems exhibit environmental benefits (i.e. negative environmental impacts) for most of the impacts, while S3 seems to be more optimal due to an intermediate syngas cleaning process, which results in both reduced emissions and increased energy recovery. Parameters driving the environmental impacts are energy recovery efficiency, feedstock variability, NOx and CO2 emissions at stack, and recycling of metals. Moreover, the overall ranking of different WtE systems is strongly dependent on operating conditions, such as effectiveness of the air pollution control process, utilization pathway of pyrolysis char, and to a lesser extent, bottom ash management (landfill or recycling). The LCA modelling conditions, such as substituted source of electricity, choice of functional unit and time frame are also shown to significantly affect the quantified environmental performance. Finally, the study highlights the directions, towards which, efforts should be focused throughout all stages of each WtE technology to obtain further improvements
    corecore