75 research outputs found

    Open-Vocabulary Segmentation with Semantic-Assisted Calibration

    Full text link
    This paper studies open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with generalized contextual prior of CLIP. As the core of open-vocabulary understanding, alignment of visual content with the semantics of unbounded text has become the bottleneck of this field. To address this challenge, recent works propose to utilize CLIP as an additional classifier and aggregate model predictions with CLIP classification results. Despite their remarkable progress, performance of OVS methods in relevant scenarios is still unsatisfactory compared with supervised counterparts. We attribute this to the in-vocabulary embedding and domain-biased CLIP prediction. To this end, we present a Semantic-assisted CAlibration Network (SCAN). In SCAN, we incorporate generalized semantic prior of CLIP into proposal embedding to avoid collapsing on known categories. Besides, a contextual shift strategy is applied to mitigate the lack of global context and unnatural background noise. With above designs, SCAN achieves state-of-the-art performance on all popular open-vocabulary segmentation benchmarks. Furthermore, we also focus on the problem of existing evaluation system that ignores semantic duplication across categories, and propose a new metric called Semantic-Guided IoU (SG-IoU)

    Language-free Compositional Action Generation via Decoupling Refinement

    Full text link
    Composing simple elements into complex concepts is crucial yet challenging, especially for 3D action generation. Existing methods largely rely on extensive neural language annotations to discern composable latent semantics, a process that is often costly and labor-intensive. In this study, we introduce a novel framework to generate compositional actions without reliance on language auxiliaries. Our approach consists of three main components: Action Coupling, Conditional Action Generation, and Decoupling Refinement. Action Coupling utilizes an energy model to extract the attention masks of each sub-action, subsequently integrating two actions using these attentions to generate pseudo-training examples. Then, we employ a conditional generative model, CVAE, to learn a latent space, facilitating the diverse generation. Finally, we propose Decoupling Refinement, which leverages a self-supervised pre-trained model MAE to ensure semantic consistency between the sub-actions and compositional actions. This refinement process involves rendering generated 3D actions into 2D space, decoupling these images into two sub-segments, using the MAE model to restore the complete image from sub-segments, and constraining the recovered images to match images rendered from raw sub-actions. Due to the lack of existing datasets containing both sub-actions and compositional actions, we created two new datasets, named HumanAct-C and UESTC-C, and present a corresponding evaluation metric. Both qualitative and quantitative assessments are conducted to show our efficacy.Comment: preprin

    BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion

    Get PDF
    Dense 3D reconstruction from a stream of depth images is the key to many mixed reality and robotic applications. Although methods based on Truncated Signed Distance Function (TSDF) Fusion have advanced the field over the years, the TSDF volume representation is confronted with striking a balance between the robustness to noisy measurements and maintaining the level of detail. We present Bi-level Neural Volume Fusion (BNV-Fusion), which leverages recent advances in neural implicit representations and neural rendering for dense 3D reconstruction. In order to incrementally integrate new depth maps into a global neural implicit representation, we propose a novel bi-level fusion strategy that considers both efficiency and reconstruction quality by design. We evaluate the proposed method on multiple datasets quantitatively and qualitatively, demonstrating a significant improvement over existing methods.Comment: Accepted at CVPR 202

    Self-similarity-based super-resolution of photoacoustic angiography from hand-drawn doodles

    Full text link
    Deep-learning-based super-resolution photoacoustic angiography (PAA) is a powerful tool that restores blood vessel images from under-sampled images to facilitate disease diagnosis. Nonetheless, due to the scarcity of training samples, PAA super-resolution models often exhibit inadequate generalization capabilities, particularly in the context of continuous monitoring tasks. To address this challenge, we propose a novel approach that employs a super-resolution PAA method trained with forged PAA images. We start by generating realistic PAA images of human lips from hand-drawn curves using a diffusion-based image generation model. Subsequently, we train a self-similarity-based super-resolution model with these forged PAA images. Experimental results show that our method outperforms the super-resolution model trained with authentic PAA images in both original-domain and cross-domain tests. Specially, our approach boosts the quality of super-resolution reconstruction using the images forged by the deep learning model, indicating that the collaboration between deep learning models can facilitate generalization, despite limited initial dataset. This approach shows promising potential for exploring zero-shot learning neural networks for vision tasks.Comment: 12 pages, 6 figures, journa

    Towards Accurate Data-free Quantization for Diffusion Models

    Full text link
    In this paper, we propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation. Conventional data-free quantization methods learn shared quantization functions for tensor discretization regardless of the generation timesteps, while the activation distribution differs significantly across various timesteps. The calibration images are acquired in random timesteps which fail to provide sufficient information for generalizable quantization function learning. Both issues cause sizable quantization errors with obvious image generation performance degradation. On the contrary, we design group-wise quantization functions for activation discretization in different timesteps and sample the optimal timestep for informative calibration image generation, so that our quantized diffusion model can reduce the discretization errors with negligible computational overhead. Specifically, we partition the timesteps according to the importance weights of quantization functions in different groups, which are optimized by differentiable search algorithms. We also select the optimal timestep for calibration image generation by structural risk minimizing principle in order to enhance the generalization ability in the deployment of quantized diffusion model. Extensive experimental results show that our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost

    Universal Segmentation at Arbitrary Granularity with Language Instruction

    Full text link
    This paper aims to achieve universal segmentation of arbitrary semantic level. Despite significant progress in recent years, specialist segmentation approaches are limited to specific tasks and data distribution. Retraining a new model for adaptation to new scenarios or settings takes expensive computation and time cost, which raises the demand for versatile and universal segmentation model that can cater to various granularity. Although some attempts have been made for unifying different segmentation tasks or generalization to various scenarios, limitations in the definition of paradigms and input-output spaces make it difficult for them to achieve accurate understanding of content at arbitrary granularity. To this end, we present UniLSeg, a universal segmentation model that can perform segmentation at any semantic level with the guidance of language instructions. For training UniLSeg, we reorganize a group of tasks from original diverse distributions into a unified data format, where images with texts describing segmentation targets as input and corresponding masks are output. Combined with a automatic annotation engine for utilizing numerous unlabeled data, UniLSeg achieves excellent performance on various tasks and settings, surpassing both specialist and unified segmentation models

    OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

    Full text link
    This paper presents a language-powered paradigm for ordinal regression. Existing methods usually treat each rank as a category and employ a set of weights to learn these concepts. These methods are easy to overfit and usually attain unsatisfactory performance as the learned concepts are mainly derived from the training set. Recent large pre-trained vision-language models like CLIP have shown impressive performance on various visual tasks. In this paper, we propose to learn the rank concepts from the rich semantic CLIP latent space. Specifically, we reformulate this task as an image-language matching problem with a contrastive objective, which regards labels as text and obtains a language prototype from a text encoder for each rank. While prompt engineering for CLIP is extremely time-consuming, we propose OrdinalCLIP, a differentiable prompting method for adapting CLIP for ordinal regression. OrdinalCLIP consists of learnable context tokens and learnable rank embeddings; The learnable rank embeddings are constructed by explicitly modeling numerical continuity, resulting in well-ordered, compact language prototypes in the CLIP space. Once learned, we can only save the language prototypes and discard the huge language model, resulting in zero additional computational overhead compared with the linear head counterpart. Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks, and gains improvements in few-shot and distribution shift settings for age estimation. The code is available at https://github.com/xk-huang/OrdinalCLIP.Comment: Accepted by NeurIPS2022. Code is available at https://github.com/xk-huang/OrdinalCLI

    1st Place Solution for 5th LSVOS Challenge: Referring Video Object Segmentation

    Full text link
    The recent transformer-based models have dominated the Referring Video Object Segmentation (RVOS) task due to the superior performance. Most prior works adopt unified DETR framework to generate segmentation masks in query-to-instance manner. In this work, we integrate strengths of that leading RVOS models to build up an effective paradigm. We first obtain binary mask sequences from the RVOS models. To improve the consistency and quality of masks, we propose Two-Stage Multi-Model Fusion strategy. Each stage rationally ensembles RVOS models based on framework design as well as training strategy, and leverages different video object segmentation (VOS) models to enhance mask coherence by object propagation mechanism. Our method achieves 75.7% J&F on Ref-Youtube-VOS validation set and 70% J&F on test set, which ranks 1st place on 5th Large-scale Video Object Segmentation Challenge (ICCV 2023) track 3. Code is available at https://github.com/RobertLuo1/iccv2023_RVOS_Challenge
    corecore