67,113 research outputs found
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
Shock and vibration response of multistage structure
Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity
Seismic analysis of 70 Ophiuchi A: A new quantity proposed
The basic intent of this paper is to model 70 Ophiuchi A using the latest
asteroseismic observations as complementary constraints and to determine the
fundamental parameters of the star. Additionally, we propose a new quantity to
lift the degeneracy between the initial chemical composition and stellar age.
Using the Yale stellar evolution code (YREC7), we construct a series of stellar
evolutionary tracks for the mass range = 0.85 -- 0.93 with
different composition (0.26 -- 0.30) and (0.017 -- 0.023).
Along these tracks, we select a grid of stellar model candidates that fall
within the error box in the HR diagram to calculate the theoretical
frequencies, the large- and small- frequency separations using the Guenther's
stellar pulsation code. Following the asymptotic formula of stellar -modes,
we define a quantity which is correlated with stellar age. Also, we
test it by theoretical adiabatic frequencies of many models. Many detailed
models of 70 Ophiuchi A have been listed in Table 3. By combining all
non-asteroseismic observations available for 70 Ophiuchi A with these
seismological data, we think that Model 60, Model 125 and Model 126, listed in
Table 3, are the optimum models presently. Meanwhile, we predict that the
radius of this star is about 0.860 -- 0.865 and the age is about
6.8 -- 7.0 Gyr with mass 0.89 -- 0.90 . Additionally, we prove that
the new quantity can be a useful indicator of stellar age.Comment: 23 pages, 5 figures, accepted by New Astronom
Asteroseismic study of solar-like stars: A method of estimating stellar age
Asteroseismology, as a tool to use the indirect information contained in
stellar oscillations to probe the stellar interiors, is an active field of
research presently. Stellar age, as a fundamental property of star apart from
its mass, is most difficult to estimate. In addition, the estimating of stellar
age can provide the chance to study the time evolution of astronomical
phenomena. In our poster, we summarize our previous work and further present a
method to determine age of low-mass main-sequence star.Comment: 2 pages, 1 figures, submitted to IAUS25
SATMC: Spectral Energy Distribution Analysis Through Markov Chains
We present the general purpose spectral energy distribution (SED) fitting
tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov
Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models
of the user's choice to infer intrinsic parameters, generate confidence levels
and produce the posterior parameter distribution. Here we describe the key
features of SATMC from the underlying MCMC engine to specific features for
handling SED fitting. We detail several test cases of SATMC, comparing results
obtained to traditional least-squares methods, which highlight its accuracy,
robustness and wide range of possible applications. We also present a sample of
submillimetre galaxies that have been fitted using the SED synthesis routine
GRASIL as input. In general, these SMGs are shown to occupy a large volume of
parameter space, particularly in regards to their star formation rates which
range from ~30-3000 M_sun yr^-1 and stellar masses which range from
~10^10-10^12 M_sun. Taking advantage of the Bayesian formalism inherent to
SATMC, we also show how the fitting results may change under different
parametrizations (i.e., different initial mass functions) and through
additional or improved photometry, the latter being crucial to the study of
high-redshift galaxies.Comment: 17 pages, 11 figures, MNRAS accepte
- …