62,866 research outputs found

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi

    Vortices, circumfluence, symmetry groups and Darboux transformations of the (2+1)-dimensional Euler equation

    Full text link
    The Euler equation (EE) is one of the basic equations in many physical fields such as fluids, plasmas, condensed matter, astrophysics, oceanic and atmospheric dynamics. A symmetry group theorem of the (2+1)-dimensional EE is obtained via a simple direct method which is thus utilized to find \em exact analytical \rm vortex and circumfluence solutions. A weak Darboux transformation theorem of the (2+1)-dimensional EE can be obtained for \em arbitrary spectral parameter \rm from the general symmetry group theorem. \rm Possible applications of the vortex and circumfluence solutions to tropical cyclones, especially Hurricane Katrina 2005, are demonstrated.Comment: 25 pages, 9 figure

    To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model

    Full text link
    The entrainment transition of coupled random frequency oscillators presents a long-standing problem in nonlinear physics. The onset of entrainment in populations of large but finite size exhibits strong sensitivity to fluctuations in the oscillator density at the synchronizing frequency. This is the source for the unusual values assumed by the correlation size exponent ν′\nu'. Locally coupled oscillators on a dd-dimensional lattice exhibit two types of frequency entrainment: symmetry-breaking at d>4d > 4, and aggregation of compact synchronized domains in three and four dimensions. Various critical properties of the transition are well captured by finite-size scaling relations with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to Statphys2

    Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

    Get PDF
    We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.Comment: Philosophical Transactions of the Royal Society A, in press (a special issue on "Localized structures in dissipative media"

    Mapping Smoking Addiction Using Effective Connectivity Analysis

    Get PDF
    Prefrontal and parietal cortex, including the default mode network (DMN; medial prefrontal cortex (mPFC), and posterior cingulate cortex, PCC), have been implicated in addiction. Nonetheless, it remains unclear which brain regions play a crucial role in smoking addiction and the relationship among these regions. Since functional connectivity only measures correlations, addiction-related changes in effective connectivity (directed information flow) among these distributed brain regions remain largely unknown. Here we applied spectral dynamic causal modeling (spDCM) to resting state fMRI to characterize changes in effective connectivity among core regions in smoking addiction. Compared to nonsmokers, smokers had reduced effective connectivity from PCC to mPFC and from RIPL to mPFC, a higher self-inhibition within PCC and a reduction in the amplitude of endogenous neuronal fluctuations driving the mPFC. These results indicate that spDCM can differentiate the functional architectures between the two groups, and may provide insight into the brain mechanisms underlying smoking addiction. Our results also suggest that future brain-based prevention and intervention in addiction should consider the amelioration of mPFC-PCC-IPL circuits

    Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers

    Full text link
    We report on the experimental observation of two types of phase-locked vector soliton in weakly birefringent cavity erbium-doped fiber lasers. While a phase-locked dark-dark vector soliton was only observed in fiber lasers of positive dispersion, a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations, and further showed that the observed vector solitons are the two types of phase-locked polarization domain-wall solitons theoretically predicted.Comment: 14 pages, 4 Figure

    DC Spin Current Generation in a Rashba-type Quantum Channel

    Full text link
    We propose and demonstrate theoretically that resonant inelastic scattering (RIS) can play an important role in dc spin current generation. The RIS makes it possible to generate dc spin current via a simple gate configuration: a single finger-gate that locates atop and orients transversely to a quantum channel in the presence of Rashba spin-orbit interaction. The ac biased finger-gate gives rise to a time-variation in the Rashba coupling parameter, which causes spin-resolved RIS, and subsequently contributes to the dc spin current. The spin current depends on both the static and the dynamic parts in the Rashba coupling parameter, α0\alpha_0 and α1\alpha_1, respectively, and is proportional to α0α12\alpha_0 \alpha_1^2. The proposed gate configuration has the added advantage that no dc charge current is generated. Our study also shows that the spin current generation can be enhanced significantly in a double finger-gate configuration.Comment: 4 pages,4 figure
    • …
    corecore