85,240 research outputs found

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    Arguing Using Opponent Models

    Get PDF
    Peer reviewedPostprin

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
    corecore