8 research outputs found

    6G Network AI Architecture for Everyone-Centric Customized Services

    Full text link
    Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system's overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions

    Virtual Network Function Migration Considering Load Balance and SFC Delay in 6G Mobile Edge Computing Networks

    No full text
    With the emergence of Network Function Virtualization (NFV) and Software-Defined Networks (SDN), Service Function Chaining (SFC) has evolved into a popular paradigm for carrying and fulfilling network services. However, the implementation of Mobile Edge Computing (MEC) in sixth-generation (6G) mobile networks requires efficient resource allocation mechanisms to migrate virtual network functions (VNFs). Deep learning is a promising approach to address this problem. Currently, research on VNF migration mainly focuses on how to migrate a single VNF while ignoring the VNF sharing and concurrent migration. Moreover, most existing VNF migration algorithms are complex, unscalable, and time-inefficient. This paper assumes that each placed VNF can serve multiple SFCs. We focus on selecting the best migration location for concurrently migrating VNF instances based on actual network conditions. First, we formulate the VNF migration problem as an optimization model whose goal is to minimize the end-to-end delay of all influenced SFCs while guaranteeing network load balance after migration. Next, we design a Deep Learning-based Two-Stage Algorithm (DLTSA) to solve the VNF migration problem. Finally, we combine previous experimental data to generate realistic VNF traffic patterns and evaluate the algorithm. Simulation results show that the SFC delay after migration calculated by DLTSA is close to the optimal results and much lower than the benchmarks. In addition, it effectively guarantees the load balancing of the network after migration

    SVM detection for superposed pulse amplitude modulation in visible light communications

    No full text
    A support vector machine (SVM)-based data detection for 8-superposed pulse amplitude modulation in visible light communication is proposed and experimentally demonstrated. In this work, the SVM detector contains three binary classifiers with different classification strategies. And the separating hyperplane of each SVM is constructed by training data. The experiment results show that the SVM detection offers 35% higher data rates when compared with the traditional direct decision method

    1.2 Gbps non-imaging MIMO-OFDM scheme based VLC over indoor lighting LED arrangments

    No full text
    We propose a non-imaging MIMO-OFDM based VLC, and analyzed its bit-error-rate (BER) performance for different LED arrangements. Rectangular LED arrangement offers improved BER compared to the linear arrangement for a range of higher-order modulation schemes

    A Dynamic Restructuring Algorithm Based on Flexible PON Slices

    No full text
    In recent years, with the introduction of the concept of the Internet of Things, a large number of terminals connected to the network, the pressure of network bandwidth is increasing. The bandwidth resources wasted by the traditional fixed access network architecture have attracted more and more attention of researchers. In order to meet the different needs of different users for service quality and improve the flexibility of network, network slicing technology arises at the right moment. Based on the slicing idea of the flexible time- and wavelength-division multiplexing passive optical network (TWDM-PON), a dynamic PON slice restructuring algorithm (DRA) is proposed in this paper. The proposed algorithm avoids the influence of previous slicing on subsequent slicing in the step-by-step slicing process, slices at the global level, and is less affected by the randomness of initialization. The simulation results show that the performance of DRA is about 10~30% higher than that of the dynamic optical network units (ONUs) grouping algorithm (DGA) and the dynamic ONU slicing algorithm (DONUSA) when there are 8 OLTs, and is about 30% higher than that of DGA and 10% higher than that of DONUSA when there are 16 OLTs. Therefore, the proposed DRA has more positive significance to relieve the traffic pressure in the increasingly tight bandwidth resources

    6G Network AI Architecture for Everyone-Centric Customized Services

    Get PDF
    Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system's overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions
    corecore