200 research outputs found

    GraspGPT: Leveraging Semantic Knowledge from a Large Language Model for Task-Oriented Grasping

    Full text link
    Task-oriented grasping (TOG) refers to the problem of predicting grasps on an object that enable subsequent manipulation tasks. To model the complex relationships between objects, tasks, and grasps, existing methods incorporate semantic knowledge as priors into TOG pipelines. However, the existing semantic knowledge is typically constructed based on closed-world concept sets, restraining the generalization to novel concepts out of the pre-defined sets. To address this issue, we propose GraspGPT, a large language model (LLM) based TOG framework that leverages the open-end semantic knowledge from an LLM to achieve zero-shot generalization to novel concepts. We conduct experiments on Language Augmented TaskGrasp (LA-TaskGrasp) dataset and demonstrate that GraspGPT outperforms existing TOG methods on different held-out settings when generalizing to novel concepts out of the training set. The effectiveness of GraspGPT is further validated in real-robot experiments. Our code, data, appendix, and video are publicly available at https://sites.google.com/view/graspgpt/.Comment: 15 pages, 8 figure

    Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

    Full text link
    The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.Comment: arXiv admin note: text overlap with arXiv:2008.1219

    Automated Machine Learning for Deep Recommender Systems: A Survey

    Full text link
    Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and system design in DRS. Finally, we discuss appealing research directions and summarize the survey

    A New Position Detection and Status Monitoring System for Joint of SCARA

    Get PDF
    • …
    corecore