2 research outputs found

    An investigation into reducing the spindle acceleration energy consumption of machine tools

    Get PDF
    Machine tools are widely used in the manufacturing industry, and consume large amount of energy. Spindle acceleration appears frequently while machine tools are working. It produces power peak which is highly energy intensive. As a result, a considerable amount of energy is consumed by this acceleration during the use phase of machine tools. However, there is still a lack of understanding of the energy consumption of spindle acceleration. Therefore, this research aims to model the spindle acceleration energy consumption of computer numerical control (CNC) lathes, and to investigate potential approaches to reduce this part of consumption. The proposed model is based on the principle of spindle motor control and includes the calculation of moment of inertia for spindle drive system. Experiments are carried out based on a CNC lathe to validate the proposed model. The approaches for reducing the spindle acceleration energy consumption were developed. On the machine level, the approaches include avoiding unnecessary stopping and restarting of the spindle, shortening the acceleration time, lightweight design, proper use and maintenance of the spindle. On the system level, a machine tool selection criterion is developed for energy saving. Results show that the energy can be reduced by 10.6% to more than 50% using these approaches, most of which are practical and easy to implement

    An investigation into methods for predicting material removal energy consumption in turning

    Get PDF
    The wide use of machining processes has imposed a large pressure on environment due to energy consumption and related carbon emissions. The total power required in machining include power consumed by the machine before it starts cutting and power consumed to remove material from workpiece. Accurate prediction of energy consumption in machining is the basis for energy reduction. This paper investigates the prediction accuracy of the material removal power in turning processes, which could vary a lot due to different methods used for prediction. Three methods, namely the specific energy based method, cutting force based method and exponential function based method are considered together with model coefficients obtained from literature and experiments. The methods have been applied to a cylindrical turning of three types of workpiece materials (carbon steel, aluminum and ductile iron). Methods with model coefficients obtained from experiments could achieve a higher prediction accuracy than those from literature, which can be explained by the inability of the coefficients from literature to match the specific machining conditions. When the coefficients are obtained from literature, the prediction accuracy is largely dependent on the sources of coefficients and there is no definitive dominance of one approach over another. With model coefficients from experiments, the cutting force based model achieves the best accuracy, followed by the exponential function based method and specific energy based method. Furthermore, the power prediction methods can be used in process design stage to support energy consumption reduction of a machining process
    corecore